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PREFACE

Jerry Becker and Tatsum Miwa, Co-Organizers

These are the Proceedings of the U.S.-Japan Seminar on Computer Use in School

Mathematics held at the East-West Center in Honolulu, Hawaii July 15-19, 1991. The Seminar

and these Proceedings mark the importance placed on technology in schoolmathematical education

in both the United States and Japan during the decade of the 1990's. They also represent a natural

extension of cross-cultural collaboration in research in problem solving, following an earlier

Seminar in July 1986. In this spirit, the first two papers represent a transition from the

collaborative research that has been underway to this Seminar.

We believe, along with all the delegates, that the Seminar was a success. Interesting,

scholarly papers and discussions filled the Seminar Agenda. It was also an enjoyable event held in

th6 superb facilities of the East-West Center with the beautiful Japanese Garden in the background.

Not only did the participants find the Seminar valuable, but the event marked the mutual and

increasing interest by mathematics educators from both counties in extending communication,

exchange and cross-cultural collaboration in research.

We want to extend our heartiest appreciation to all the delegates who, through their paper

presentations and discussion, accounted for so much of the quality interaction during the Seminar.

We need to also express appreciation to the National Science Foundation (NSF) and the Japan

Society For the Promotion of Science (JSPS) which, through the U.S.-Japan Cooperative Science

Program, made this Seminar possible. In particular, Mr. Warren Thompson and Ms. Patricia

Tsuchitani have our thanks for their important role in the Seminar's success.

No bi-national seminar such as this can be successful without competent translators. In

this respect, the Seminar was exceedingly fortunate to have Mr. Seiichi Kaida and Dr. John Haig

as translators. Not only were they highly knowledgeable about the intricacies of translating

between English and Japanese, but they were friendly, amiable individuals who worked patiently

and tirelessly to smooth communication during Seminar sessions and social activities. To both we

extend our profound appreciation.

As mentioned above, the facilities of the East-West Center are superb and certainly they

were ideal for our Seminar. For providing comfortable meeting arrangements, an excellent

technical setup, and a staff of friendly and supportive individuals, weneed to convey our deep

appreciation to Mr. James McMahon, the Logistics Officer of the East-West Center. Through Mr.

McMahon's support and patience, our Seminar was helped to success. To members of his staff

goes our sincere thanks: Cathy Yano, Kathleen Clark, and Norma Heen.

This Seminar was an important one and it is important to note that it is anatural extension

vii



of the collaborative research which followed the earlier Seminar in 1986. The first phase focused

on students' problem solving behaviors and with the current growing use of technology

(computers and calculators) in both countries, researchers on both sides agreed that another

Seminar to explore its use in teaching and problem solving was needed. All agreed that such a
Seminar would be useful, as well as timely, and it was decided to seek support by submitting

proposals simultaneously to the NSF and JSPS. These proposals were reviewed on both sides

and recommended for support. There ensued preparation on both sides covering a time period of
1-2 years, culminating in this Seminar at the East-West Center.

We also express our appreciation to Nancy Whitman, Gary Martin, Joe Zilliox and Neil

Pateman of the University of Hawaii. They assisted the Co-Organizers in a multitude of ways; in

particular, they provided some of the hardware needed for the Seminar and participated in the

sessions. Gary Martin also hosted a very useful and informative visit to the Hawaii Geometry

Learning Project. To Ms. Joan Griffin goes our heartfelt appreciation for her enormous energy

and friendly competence in transcribing the discussion tapes and in assisting in getting all the

manuscripts into final form. We also thank Mary Jane Schaaf, Karen Stotlar and Lois Cornett for

their help in revising manuscripts after editing. Ms. Ming Wang provided computer expertise in

transporting all the papers into Microsoft Works - to her goes our enormous gratitude. Others

assisted in various ways in finalizing this report, though any mistakes are the responsibility of the

Editors.

Various companies provided hardware and/or donations of software and other materials for

demonstration at the Seminar. We acknowledge their generosity below, and express our profound

gratitude since software demonstrations were a crucial part of the Seminar:

NEC/Japan (Mr.Yasuhiro Morimoto)

Sunburst Communications (Stacey Yaruss)

Key Curriculum Press (Steve Rasmussen)

Computer-Intensive Algebra (Drs. James Fey and Kathleen Heid)

Function Probe (Dr. Jere Comfrey)

DERIVE

IBM (Mathematics Exploration Kit)

Mathcad

Houghton-Mifflin (Geometry Grapher)

Texas Instruments (Tom Ferrio)

It is our earnest hope that these proceedings will be of interest to mathematics educators in

both countries, as well as to others who share our desire to advance the cause of an improved

mathematics education for children and students at all school levels. Further, we are hopeful that

the cross-cultural research that has been underway may continue and that the results will contribute

viii 1 3



to a better understanding of the potential that computer use holds for educating students in

mathematics.

Jerry P. Becker

August 1992

Tatsuro Miwa

Special Note: The American delegation was pleased to host the Seminar in Honolulu. We wish to

include a special acknowledgement to members of the Japanese delegation, all of whose members

prepared and presented their papers in English in excellent fashion. This represented a significant

effort on their part, an effort for which we are deeply appreciative.

Jerry P. Becker
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SEMINAR PURPOSES

There continues to be considerable interest and a large number of activities in mathematics

education in both Japan and the United States. Mathematics educators in both countries are

exploring ways in which student learning can be improved in all areas of school mathematics. But

a present area of great concern and an area on which mathematics educators of both countries are

focusing their attention is the use of technology in teaching problem solving. Accordingly, this is

the focus for the present Seminar and subsequent research.

During the research subsequent to the 1986 Seminar involving American and Japanese

mathematics educators and continuing right up to 1992, a great and mutual interest was expressed

in continuing to bring mathematics educators on both sides together to improve communication and

to propose and conduct further research. This joint U.S.-Japan Seminar seemed like an excellent

manner by which to do this. The main purposes of the Seminar were set as follows:

1. to examine the present state of technology use in school mathematics in the United

States and Japan,

2. to explore classroom practices using technology in the United States and Japan,

3. to examine existing data and research concerning technology use in the two countries,

4. to see demonstrations of software used in each country,

5. to discuss software development and the philosophy underlying its use,

6. to make plans for cross-cultural research in technology use in problem solving in the

U.S. and Japan.
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OPENING CEREMONY

Monday, July 15, 1991

Miwa: Good morning Ladies and Gentlemen.

On behalf of the Japanese delegation, I convey our most sincere greetings to

members of the American delegation. It is our great pleasure to come back here

again, to meet old friends and to become acquainted with new friends. Just five years

ago, in July 1986, Professor Becker and I organized the U.S.-Japan Seminar on

Mathematical Problem Solving held here at the East-West Center. Subsequently, in

the years 1988 and 1989 U.S. and Japanese colleagues collaborated in research on

students' problem solving behaviors. Both were supported by the National Science

Foundation (NSF) and the Japan Society for the Promotion of Science (JSPS). This

Seminar is surely an extension of that Seminar and research into a study of urgent

issues which is needed in the mathematical education community today; that is, to

foster students' mathematical problem solving ability with use of computers.

Needless to say, problem solving has been and is now a major focus of school

mathematics in both the United States and Japan. It is well known that emphasis is

placed on teaching mathematical problem solving in classrooms in both countries. On

the other hand, use of technology, in particular, of computers, is an urgent task in the

mathematics educational community not only in the U.S. and Japan, but all over the

world.
This Seminar addresses the use of computers in school mathematics from a

cross-cultural viewpoint. By computer we mean mainly the microcomputer, but also

the hand-held calculator. The purposes of the Seminar are to integrate recent studies

on computer use in school mathematics and in mathematical problem solving in both

countries, to investigate a framework forfurther study and to set a research agenda

which seems both possible and necessary. We in the Japanese delegation sincerely

hope that the U.S. researchers will give us kind advice since the U.S. is a pioneer and

forerunner in this area. In order that there be a large success in the Seminar, I ask for

the cooperation of all of you.

At this point, I would like to offer my sincere thanks to members of the U.S.

delegation. In particular, to Professor Beckerwho has been very kind and careful in

handling arrangements for the Seminar so perfectly. Also, I offer my sincere thanks

to the East-West Center which has provided the Seminar rooms, technical support and

various facilities, and especially to Mr. McMahon who has done so much to make our

conference comfortable. In thinldng about the Seminar, with its focus on cross-



cultural matters, the East-West Center is, perhaps, the most appropriate place for our

meeting. In addition, I am very grateful to the NEC corporation which transported

Japanese computers to Hawaii which will enable us to demonstrate Japanese

software. Finally, I want to express thanks to our translators Mr. Seiichi Kaida and

Professor John Haig. Our hope is that they will assist in lowering the language

bather and thereby contribute towards the success of the Seminar. Thank you very

much.

Becker: Thank you, Professor Miwa, for the greetings of your delegation and very generous

remarks. All of my American colleagues join me in expressing what a great honor it

is for us to have such a distinguished group of Japanese mathematics educators in our

country and in this beautiful center to participate in this Seminar. On behalf of the

entire U.S. delegation, we welcome you to the United States and to the East-West

Center. Also, we express our appreciation to Mr. James McMahon who, of course,

has been generously working with Professor Miwa and me for many months in

making the arrangements for the Seminar.

I would like to take a couple of minutes to give a brief history of how it is that

we have come together to discuss the use of technology in teaching mathematics at the

school level. Professor Miwa has already touched on this a little. But, back in the

early 1980s when I was attending a meeting in Tokyo, Professor Shigeru Shimada

and Professor Miwa approached me and raised the question of a possible U.S.-Japan

seminar on mathematics education. Sometime after that we became acquainted with

the U.S.-Japan Cooperative Science Program, organized under auspices of the

National Science Foundation in the United States and the Japan Society for the

Promotion of Science in Japan. We were subsequently able to acquire funding

support from them and we convened delegations, as Professor Miwa has said, in July

1986 here at the East-West Center. And that represented the first phase of our

collaboration. At that Seminar, we decided that we would publish the Proceedings of

the Seminar and that we would also engage in cross-national research on students'

problem solving behaviors. That work has been under way for some time now with

support from the National Science Foundation and the Japan Society for the

Promotion of Science. In fact, Professor Miwa, his colleagues and I had some

discussions some time ago in which we thought we would like to begin this Seminar

by providing a transition from the last Seminar, and subsequent collaborative

research, to this Seminar. As Professor Miwa has said, we can see this Seminar as a

natural extension of joint, collaborative work that has been going on with U.S. and

2
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Japanese mathematics educators for sev.zal years. In the United States there has been

a great deal of emphasis on the use of technology in teaching mathematics and

problem solving. For example, recent and highly authoritative books published by

NCTM (i.e., the QuicaluaLanclayaluatinalanclards (1989) and the Professional

Standards For Teaching Mathematics (1991)), address the question of technology use

in school mathematics. Similarly, in Japan there is a new revision of the national

curriculum in mathematics (i.e., Mathematics Progrananianan (1989)) which

recommends integration of technology into school mathematics teaching. So,

technology' is now very important in both of our information- oriented societies and,

therefore, in teaching mathematics at the school level.

Once again, on behalf of the American delegation, we welcome our Japanese

colleagues to the Seminar and look forward to continuing our work together.

Miwa: Thank you. For this occasion we brought Japanese textbooks, from the elementary

through the upper secondary school levels, and the translation of the new Course of

Study which details the content taught in our educational system. In addition, we

have brought copies of jagskiagisandEigurasAimatnglducaticiaasyggnua
Linn. It is our honor to present these materials to the U.S. delegation. I want to

mention, also, that one series of textbooks, for the secondary level, has been

translated into English by the University of Chicago School Mathematics Project

(UCSMP).

Becker: I am happy to accept these materials on behalf of our delegation and, on behalf of the

entire U.S. delegation, please accept our sincere appreciation for these gifts. The

book basic Facts and Figures About the Educational System in Japan contains a lot of

very useful and interesting information about education in Japan. The Mathematics

Program in Japan is the new syllabus, for implementation beginning in 1992. We

appreciate these new materials very much. Reciprocating, the U.S. delegation has

brought to the Seminar a collection of software that can be used in teaching

mathematics at the school level, for developing mathematical thinking and problem

solving abilities. During the working group session on Thursday, we will

demonstrate much, but probably not all, of the software. My colleagues join me in

presenting these materials to you, Professor Miwa, and the Japanese delegation. In

addition, we have one other little gift which we would like to hand out. For each of

you, we have a coffee mug from the National Council of Teachers of Mathematics

which we'll hand to you in just a little while.

3 P.. 3



Miwa: Thank you very much. On behalf of the Japanese delegation, we are grateful to the

U.S. delegation for the software, which we will study and which will be very useful.

We also thank you for the coffee mugs which will serve as a reminder and souvenir

of this Seminar. Thank you very much.

4



A REPORT OF U.S.-JAPAN CROSS-CULTURAL RESEARCH

ON STUDENTS' PROBLEM SOLVING BEHAVIORS

Tatsuro Miwa Toshiakira Fujii

Institute for Applied Optics University of Yamanashi

Tokyo, Japan Yamanashi, Japan

Introduction

In this report, we would like to present an analysis of Japanese data concerning the five

"Common Survey" problems given as part of the U.S.-Japan Collaborative Research on Students'

Problem Solving Behaviors. The aim of the Common Survey is to examine commonality and

differences of strategies and difficulties between U.S. and Japanese students at a variety of grade

levels when they solve non-routine problems.

Students were asked to write not only answers, but also the ways or approaches of finding

answers. In addition, they were asked not to erase anything written down, but to draw a line

through anything they felt was in error. Through analysis of students' writing we hope to

elucidate and identify the nature of students' problem solving behaviors. In addition, we

administered a questionnaire concerning students' attitudes and abilities about mathematics and

towards the problems administered to students. These results will reveal affective aspects of U.S.

and Japanese students' mathematical problem solving behaviors.

Generally, analysis of the results of problem solving tends to focus on the correctness of

answers. One characteristic of our common survey is to analyze and compare students' ways of

thinking between the two countries through examination of their scripts. In this report, we

considered correct and incorrect answers alternatively in pairs in terms of the way of solving that

produced them. Then we related the rate of correct answers with the approaches chosen.

The results reported here are for Japanese data. We look forward to comparing the

Japanese and U.S. data, which appears at the moment in the draft papers by U.S. researchers.

Methodology

Problems Given
Researchers of both countries proposed several problems as candidates for the Common

Survey Problems during 1988-89; then the problems were tried out in the spring, 1989. The
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problems were revised, then finally administered about the same time in each country's school year

during 1989-90. In addition to the problems, student questionnaires concerning their affective

aspect of mathematical problem solving were developed, along with a teacher questionnaire to

gather information about the schools, characteristics of the classes, teachers' opinions of student

attitudes towards solving the problems, and teachers' reactions to the problems. The survey was

administered according to instructions which were also developed among the researchers. We

made decisions to collect the data at the 4th, 6th, 8th and 11th grades, and two problems were

administered for each grade with one of the two problems overlapping two grades, as listed below:

Problems Grade Levels

1 Marble arrangement 4

2 Number of matchsticks 4, 6

3 Number of marbles 6, 8

4 Arithmogon 8, 11

5 Areas of squares 11

(Note 1) The five problems are shown in the Appendix.

(Note 2) In Japan, grades 4 and 6 are in elementary school, grade 8 is in lower secondary school

and grade 11 is in upper secondary school, the second year of lower and upper secondary school,

respectively. In Japan, elementary and lower secondary education are compulsory and free.

Although upper secondary education is not compulsory, its enrollment is now about 94% of the

age group.

Subjects in Japan
Subjects were one classroom of students at the grade level of a school in five prefectures:

Ibaraki, Yamanashi, Kanagawa, Aichi and Hiroshima. For selection of schools, no statistical

methods were applied. Therefore, we cannot say the results represent an average achievement of

students in the country in a statistical sense, but rather the results are case studies to find out

features in mathematical problem solving behaviors in terms of commonality and differences. In

Japan, numbers of subjects and gender were as follows:

Grade 4 6 8 11

B G T B G T B G T B G T

Number 84 88 172 91 91 182 96 93 189 135 95 234

Grand Total: Boys 406, Girls 371, Total 777

6
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In this report, although subjects consist of boys and girls nearly equally, we are not going

to analyze the data in terms of sex differences in achievement.

Administration
Survey tests were administered according to the instruction of one problem for fifteen

minutes each; that is, the survey would be within one class period, including the student

questionnaire. The teacher let students solve the first problem for the first fifteen minutes and the

second problem for the next fifteen minutes. And after solving the two problems, the teacher

asked students to respond to the questionnaire for five minutes. According to the instructions, the

teachers were asked not to answer any questions from subjects concerning the content of problems;

e.g., meaning of the problems, how to start with the problem, etc..

Marble Arrangement*

This problem is for 4th grade students in the elementary school.

The total number of students' responses was 990, and 95% of responses were correct.

The mean number of responses per student was 5.8, and 5.9 for boys and 5.6 for girls,

respectively. The minimum number of responses by an individual student was 1 and maximum

number was 15. The highest percentage of the number of the responses (44%) was six; this may

be associated with the number of solution spaces provided in a worksheet.

The results are examined from the two perspectives: one is the ways of solving the

problem, (i.e., solution strategy) and the other is mode of explanation (i.e., the manner in which

the students justified their answers).

The Mode of Explanation
The students' modes of explanation were identified by taking individuals into

consideration. If an individual student used at least one pictorial explanation in his/her responses,

we coded him/her as "Have" Figure Explanation. If a student did not draw anything in all problem

figures provided, we coded him/her as "rot have". The Words Explanation mode was coded in

the same way. The words explanation mode includes words as verbal explanation and/or

mathematical expression. In total, 75% of students used both figure and wordsexplanation, and

almost all students (97%) used words explanation.

* Data in this section are taken from Nagasaki(1990) pp. 27-44, (1991) pp.37-52.
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Table 1 The Mode of Explanation in Marble Arrangement

Figure Explanation

Have Not have Total

Words Have 75% 22% 97%

Explanation Not have 3 0 3

Total 78 22 100

The words explanations consisted of verbal explanations and/or mathematical expressions.

These explanations are subdivided with respect to arithmetic operations such as counting, adding,

and multiplying. Finally, these were classified into five categories as follows:

1 verbal / counting: count one by one, count by lining, count from the top.

2 verbal / addition: sum up, by adding the marbles.

3 verbal / multiplication: take them into groups, count by fives.

4 mathematical expression / addition: 1+3+5+7+5+3+1, 4+3+4+344+3+4.

5 mathematical expression / multiplication: 5x5, 4x4+3x3, 3x8=24 24+1.

In order to analyze students' priorities in the use of words explanation, we made the order

of above five categories according to a mathematical point of view as follows: 1<2<3.<4<5. That

is, mathematical expression using multiplication as an arithmetic operation is considered the highest

mathematical value. Then the modes of explanation were ordered and identified according to the

order. For instance, if a student shows 1, 3, 4 in responses, we identify the mode of explanation

as 4, which is the highest order among 1, 3 and 4. The following table shows students' priorities

in ways in words explanation.

Table 2 Ways in Words Explanation : Students' Priorities

Verbal Explanation Mathematical Expression

Counting Addition Multiplication Addition Multiplication

3% 0% 19% 15% 60%

(Total number of students : 172)

Sixty percent of Japanese 4th graders used multiplication as a mathematical expression in at

least one of their responses. The percentage of 60 seems quite high indeed. Multiplication is

8
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frequently used by Japanese students.

Ways of Solution
Ways of solving the problem were classified into five categories:

A Enumeration.
B Grouping by number (multiple of 2, 3 etc. )

C Grouping by direction (vertical, horizontal etc.)

D Grouping by figure (enclosing, symmetry etc.)

E Transforming into a figure to apply multiplication (displacement)

Category A is that students enumerate marbles presumably without considering the

configuration in the marble arrangement. Categories B, C and D are responses based upon pattern

or structure which students found in the arrangement of the marbles, and category E is that

students change the structure of the pattern. These were identified in figurative explanation, of

which the total number was 603. The numbers of responses and of students classified into above

categories are shown below:

Table 3 Ways of Solution of Marble Arrangement (Figure Explanations)

# of Response # of Student Re./Stu.

A Enumeration 60 41 1.5

B Grouping by number 241 99 2.4

C Grouping by direction 242 91 2.7

D Grouping by figure 52 44 1.2

E Transforming into a figure 8 5 1.6

Table 3 shows that over half of the students used categories B and/or C, while less than

one fourth of students used A and/or D. Students tended to change their ways of solution within

categories B and C by focusing on the number and directions, respectively. In order to examine

responses in more detail, we classify them into the following 38 subcategories, as illustrated in

Table 4.
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Table 4 Subcategories for Ways of Solution (Figure Explanations)

Number of

Responses

Number of

Students

A Enumeration

A-1 Count one by one 60 41

B Grouping by number

B-1 Making multiples of the same number

B-1-2 Multiple of 2 31 31

B-1-3 Multiple of 3 35 33

B-1-4 Multiple of 4 39 37

B-1-5 Multiple of 5 57 51

B-1-6 Multiple of 6 16 12

B-1-7 Multiple of 7 9 9

B-1-8 Multiple of 8 5 5

B-1-9 Multiple of 9 4 4

B-1-10 Multiple of 10 33 32

B-1-11 Multiple of 11 2 2

B-1-12 Multiple of 12 4 4

B-1-13 Miscellaneous 6 4

10 3
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C Grouping by directions

C-1 Horizontal - vertical

C-1-1 Horizontal 35 28

C-1-2 Accumulated hori. 12 12

C-1-3 Transformed hori. 14 12

C-1-4 Vertical 36 30

C-1-5 Accumulated vert. 14 12

C-1-6 Transformed vert. 11 6

C-1-7 Mixed hori.& vert. 2 2

C-1-8 Connecting hori.& vert. 0 0

C-2 Top-bottom & Left -right

C-2-1 Partition by Top-bottom 44 23

C-2-2 Partition by Left-right 12 5

C-2-3 Miscellaneous 9 5

C-3 Oblique

C-3-1 Right down 17 17

C-3-2 Left down 23 22

C-3-3 Mixed 13 10

C-3-4 Divided and tight down 0 0

C-3-5 Divided and left down 0 0

C-3-6 Transformed oblique 0 0

11
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D Grouping by figures

D-1 Enclosing

D-1-1 Purely enclosing 14 14

D-1-2 Transformed enclosing 4 4

D-2 Central axis

D-2-1 Central region 4 4

D-2-2 Transformed central re. 12 10

D-2-3 Symmetry 9 9

D-2-4 Transformed symmetry 9 8

E Transforming into a figure

E-1 Displacement 8 5

E-2 Supplement 0 0

Table 4 shows that many students tend to group marbles in various ways. This tendency

seems to relate to their tendencies to use a multiplication mode in justifying their answers. Taking

into account individuals to analyze students' ways of finding structure in the situation, we could

identify five categories "a" to "e" shown in the Table 5. We value these five categories as follows :

a<b<c<d<e. That is, if a student uses three categories, say "a", "c" and "d", then we identify

him/her in category "d". Rates of students in five categories are shown in the Table 5.

32
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Table 5 Ways of Finding Structure in the Figure

a Marking each marbles one by one 3%

b Drawing a continuous line or 5

lines connecting marbles

c Dividing the structure by drawing 1

a line

d Grouping by some subsets 66
with the same number of marbles

e Displacement or adding some new marbles 3

g 0 0
&

g Ci
CP

In Table 5 we see that 66% of students grouped the figure by some subsets. Grouping the

marbles into sets with the same number may naturally lead to realize a multiplicative structure of the

figure, and then students could represent it by a multiplication mode. If they use the category "b":

drawing a continuous line or lines connecting marbles, they would use the enumeration and/or

addition mode because marbles connected with lines may only lead to insight for an addition

structure. That Japanese students use a multiplication mode of explanation, rather than an addition

mode, may be associated with this fact.
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Number of Matchsticks*

Ways of Solution
We identified the following five categories of students' ways of solutions whether they lead

to correct answers or not, taking underlying mathematical ideas into consideration:

A Consider square as a unit figure, and eliminate overlapping edges.

Ex. 4x 8 7 =25, 4 x 8 =32

B Consider figure ] or [ as a unit figure, and add a terminal edge or a square. ( ] looks like

a Japanese Katakana character, pronounced "ko".)

Ex. 3 x 8 +1 =25, 3x8 +4 =25, 3 x7 +1=22

C Calculate horizontal and vertical edges respectively.

Ex. 2 x 8 + 7 + 2 = 25, 2 x 8 + 8 = 24

D Draw figures and count one by one.

E Others.

Results for Grade 4 and Grade 6 students are illustrated in the Table 6. The fourth graders

tended to use the method of type A, type B and type D. In type A, fourth graders resulted more

often in an incorrect answer. With detailed observation, it becomes clear that fourth graders were

mainly indifferent to overlapping. In other words, the majority of them ignored overlapping or

shared sides and used a mathematical expression: 4x8=32. In addition, more fourth graders used

type D than sixth graders. In this case, not a few made errors in counting. In sixth graders, most

used method was type B. This is because they tried to avoid involvement of overlapping situation.

Instead, they tried to interpret the figure as the Katakana character of 3. This fact implies that the

better strategy could reach the higher rate of correct answer.

* Data in this section are taken from Fujli (1990) pp. 47-64, (1991) pp. 53-72
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Table 6 Ways of Solution of Matchsticks

Grade
Total

4

Correct Incorrect Total

6

Correct Incorrect

A Square as a unit figure 23% 1% 23% 16% 5% 11%

B Figure as a unit figure 28 24 4 43 38 5

C Calculate hori. and vert. 8 6 2 6 6 1

D Draw figures and count 28 22 6 10 9 1

E Other miscellaneous 12 4 8 25 11 14

No Answer 1 1 1 1

Total 100 57 43 100 67 33

We examined the mode of explanation for solution and identified ten categories for the

manner in which each response was justified by the student. Results are shown in the Table 7.

Table 7 shows that the mode of explanation involving the mathematical expressions

increased from fourth graders (64%) to sixth graders (79%). This result seems to be consistent

with the results analyzed in the Marble Arrangement Problem. Japanese students tend to use

mathematical expressions when they try tojustify their answers.

Table 7 Mode of Explanation in Number of Matchsticks

Grade 4 Grade 6

Math. expression only 20% --1 36%-1

Math. expression, Figure 12 64% 17 79%

Math. expression, Verbal explanation 20 i 19

Math. expression, Figure, Verbal expl. 12 7

Verbal explanation only 13 7

Verbal, Figure 11 5

Figure only 11 8

Table only 0 1

Answer only 1 1

No Answer 0 1
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Problems Made up by Students
We focus on the first problem students produced, because it was the problem students

made up just after getting a solution to the given problem and would reflect what they had thought

out in the solving process. Problems made up by students are classified into six categories as

shown in Table 8.

Type 1 problems are basically produced by changing the condition given in the original

problem. Type 2 problems are the converse of the original one. A typical example is a problem

asking the number of figures which can be constructed by a given number of matchsticks. Type 3

problems are different in the materials and also in situation from the original one.

We will examine Type 1 problems in more detail to identify students' thinking in producing

new problems. First, we consider the conditions involved in the original problem, which is shown

below.

Squares[3] are made by using matchsticks[5] as shown in the picture[2]. When the

number of squares is eight[4], how many matchsticks[1] are used?"

Table 8 Problems Made up by Students

Type 1 Problems asking the number of edges 63%

* with overlapping

* without overlapping

* undecided with regard to overlapping

Type 2 Converse problem

51

6

5

5%

* with overlapping 3

* without overlapping 1

* undecided with regard to overlapping 1

Type 3 Problems on four rules 10%

* multiplication 5

* division 2

* addition and subtraction 2

* mixed 1
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Type 4 Others 7%

* construction 1

* Ueld-zan (planting tree probl) 1

* problem of area 1

* others 4

Type 5 Write other solutions of given

problem

7%

Type 6 Unidentified & No writing 8%

We can grasp its mathematical and non-mathematical constituents as follows:

[1] It is a problem asking the number of edges.

[2] There are overlapping sides in constructing unit figures.

[3] A unit figure is a square.

[4] The number of units is eight (eight in a row).

[5] The materials are matchsticks.

Problems newly made up by students are those in which constituents are changed from the

original ones.
1 Ask the number of edges --- ask the number of vertices, of particular edges.

2 Have overlappings --- change the way of overlapping, without overlapping,

whether have overlapping or not.

3 Square --- other polygons (e.g., triangle, hexagon, rectangle), polyhedra.

4 Eight (eight in a row) --- nine or more in a row, m row & n column,

circular arrangement, spatial arrangement.

5 Matchsticks --- pencils, rulers.

Two hundred and sewnteen problems which were made up as the first problem of Type 1

by students are structured as illustrated in the Figure 1 below.

Figure 1 reveals that on construction of figures in students' made problems from the most

were square (78), triangle (67) and rectangle (18), on arrangement the most is one row n column,

n>8. That is, students tend to make up new problems changing from eight squares in the given

problem to n squares ur n triangles, n>8.
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Figure 1 Number of Type 1 Problems Made up by Students

Asking the number of edges

217

Considering overlapping

178

Triangle Square Rectangle Other polygons

67 78 18 Polygons 13

I

II/

6 Polyhedra 2

2

1 (Details are

0 not described.)

5

3

0

0

0

0

1

0

0

0

0

0

lxn(n<8) (Matchst.) 10 11

(Others) 0 6

1x8 (Matchst.) 3 3

(Others) 0 2

lxn(n>8) ( Matchst.) 31 33

(Others) 8 11

2xn(n<8) ( Matchst.) 0 5

(Others) 1 0

2x8 (Matchst.) 1 1

(Others) 0 0

rrixn(rn>2 (Matchst.) 2 5

n>8) (Others) 0 0

Pyramid ( Matchst.) 4 0

(Others) 1 0

Others ( Matchst.) 4 1

(Others) 2 0

`lb
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Number of Marbles*

This problem is for the 6th grade students in the elementary school and 8th grade students

in the lower secondary school.

Rate of Correct Answers between Questions

In this problem, rate of correct answer between questions is as follows:

Table 9 Rates of Correct Answer in Number of Marbles

Grade 6 (N=141)# 8 (N=188)

Question #1 90% 96%

Question #2 28 61

Question #3 24 37

Note: (# In this problem, performance of students of sixth grade in Aichi Prefecture was

excellent by far, from that of others, and their results were eliminated from the analysis.)

Table 9 shows that both sixth and eighth graders were successful in Question #1. But the

rate of correct answer decreased from Question #1 to #3. The sixth graders' rate of correct answer

decreased dramatically in Question #2, compared with eighth graders' results. In contrast, the

eighth graders' rate of correct answer decreased in Question #3, where they needed to use literal

symbols in algebra. This reveals that eighth graders had difficulty in making up mathematical

expressions involving variables.

In order to examine the above results from a different viewpoint, we classified students

according to the correctness of answers in three sequential questions as illustrated in the following:

1 Those whose answers were correct in all Questions #1, #2 and #3.

2 Those whose answers were correct in Questions #1 and #2 but not in #3.

3 Those whose answers were correct only in Question #1.

4 Other.

Rates of respective categories are shown below:

*Data in this section taken from Ishida, J. (1990)pp. 65-86, (1991) pp. 73-96.
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Table 10 Rates of Correct Answers in Sequential Questions

Grade 6 8

1 21% 34%

2 7 27

3 59 33

4 13 7

Table 10 shows again that, for sixth graders, there was a large gap between the fourth term

(Qu. #1) and sixteenth term (Qu. #2) in generalizing the pattern in Question #1.

Ways of Solution
From now on, we will focus on students who got correct answers for Question #1,

because the rate of correct answers in #1 is 90% or above for students.

Observing students' scripts for this problem, we can identify the following ways of solving

the problem:

A Draw a figure of marbles and count one by one.

Apply a rule that in each term there are four rows,

in which the number of marbles increase one by one from the top row.

Ex. 4+5+6+7 for Qu. #1

C Apply a rule that when the number of term increases by one, the number of marbles

increases by four.

1 Calculate the increment and add it to the first term value 10.

Ex. 4x3 + 10 for Qu. #1.

2 Multiply 4 by the number of terms, and add to six.

This is the same way as Cl, but it is easy to generalize.

Ex. 4x4 + 6 for Qu. #1.

3 Calculate the increment and add it to the term other than the first.

This is a slight transformation of Cl.

Ex. 4x2 + 14 for Qu. #1, as 14 is a value for the second term.

C' Add 4 to the immediately prior term.

Ex. 18+4 for Qu. #1

D Apply the formula for the area of a trapezoid or parallelogram.

40
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E Make up a table and find the pattern.

F Others.

Errors and no answer

Errors in Type G are classified as follows:

S Answer only increment, i.e., 4xn for the nth term.

R Use Proportional strategy.
Ex. The first term is 10, then the 16th is 10x16.

Ex. The fourth term is 22, then the 16th is 22x4.

H No Answer.

Results of the analysis of ways of solution are shown in Table 11 for 6th graders and Table

12 for 8th graders.

Table 11 Ways of Solution for Questions #1, #2 and #3: Grade 6

(Those who got correct answers for #1 only)

A B C

1 2 3 Total

C'DE F SRW

Qu. #1 Corr. 13% 18% 10% 6% 1% 17% 39% 2% 0% 11%

Qu. #2 Con. 1% 12% 13% 3% 3% 19% 2% 0% 0% 2%

Qu. #2 Inco. 1 6 12 0 2 14 2 0 1 11 11% 6% 13%

Qu. #2 Total 2 17 24 3 5 32 5 0 1 13 11 6 13

Qu. #3 Com 0% 9%13% 3% 2% 18% 0% 0% 0% 1%

Qu. #3 Inco. 1 6 13 0 2 15 1 0 0 8 12% 3% 28%

Qu. #3 Total 1 15 26 3 4 33 1 0 0 9 12 3 28

In applying the solution method used at the fourth term to the sixteenth term and then

hundredth or nth term, ways of solution or mathematical expressions at the fourth term would

largely influence students' achievement. In other words, if students solved Question #1 with the

solution method which had potential for generalizing the pattern, they would have the possibility of

getting answers in Question #2 and #3. In fact, nearly all those of C2 type in Question #2

(4x16+6) got the correct answer for Question #3. But these students were not many.

Viewing Tables 11 and 12, we can find that ways of solution used for question #1 were

4
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from the most C' (39%), B (18%), and A (13%) for sixth graders, and C' (30%), C (19%), A

(15%), B (13%) for eighth graders. Unfortunately, the most often used method did not have

potential for generalizing the pattern and for getting correct answers in Question #2 and #3.

The rate of category A decreases dramatically from Qu. #1 to Qu.#2 and #3 for both grade

levels. This shows that drawing a figure for the 16th and 100th or nth is not easy or impossible

and students belonging to category A changed their methods of solution.

Table 12 Ways of Solution for Question #1,#2 and #3: Grade 8

(Those who got correct answers for #1 only)

A B C

1 2

C'

3 Total

DE F S R W

Qu. #1 Con. 15% 13% 19% 9% 0% 28% 30% 3% 5% 7%

Qu. #2 Con. 1% 18% 24% 14% 2% 40% 3% 3% 2% 0%

Qu. #2 Inco. 0 5 10 0 0 10 4 0 4 2 2% 3% 5%

Qu. #2 Total 1 23 34 14 2 50 7 3 6 2 2 3 5

Qu. #3 Corr. 0% 4% 15% 13% 0% 30% 0% 2% 0% 0% 0% 0% 0%

Qu. #3 Inco. 0 3 22 0 1 23 0 1 0 0 4 0 30

Qu .#3 Total 0 7 37 15 1 53 0 3 0 0 4 0 30

For sixth graders, while the rate of category B is constant from Qu. #1 to #2 and #3, the

rate of C is about twice that of Qu. #1 for #2 and #3 and that of C' decreases radically and is one

tenth of Qu. #1 for #2 and only 1% for #3. In addition, the rate of S is not negligible for Qu. #2

and #3 and category W is especially large for this grade. This reveals that many sixth graders had

difficulty in making up mathematical expressions that could generalize from the pattern they had

found at the fourth term. These facts may explain the reason why the rate of correct answers were

decreasing dramatically in question #2 and #3.

For eighth graders, the rate of category B increases between Qu. #1 and #2 but decreases

between #2 and #3. On the other hand, the percentage of C increases from Qu. #1 to #2 and #3

and becomes over 50%, but the percentage of C' decreases to one fourth of Qu. #1 for Qu. #2 and

vanishes for #3. Most noticeable is rate the W, especially for Qu. #3, which is greater than that of

sixth graders.

Finally, we note that some students assumed the marble arrangement to be a geometric

figure like a trapezoid and applied a formula of measuring the area. They made a connection
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between arithmetic and geometry. It is to be recommended in mathematics.

Arithmogon*

This problem is for 8th grade students in the lower secondary school and 11th grade

students in the upper secondary school.

Rate of Correct and Incorrect Answers between Problems

Problem 1 (Triangular arithmogon) has a unique solution, while problem 2 (Square

arithmogon) has infinitely many solutions, i.e., any integer is possible to be substituted for, say,

top left circle and gives a solution. Therefore, in problem 2, we distinguished those who got the

correct answer, i.e., infinitely many solutions, from those who got one correct solution with no

indication of more than one or infinitely many solutions.

Responses of students are shown in the Table 13 below. In the Table 13 we see that the

rate of correct responses is 39% and 90% of eighth and eleventh graders, respectively, for Problem

1. For Problem 2, the rate of correct responses surprisingly decreased to only 1% for both eighth

and eleventh graders. The percent of "Got One Answer" is 38% for 8th graders and 24% for 11th

graders. The percent of "Incorrect answer" increased from 21% for 8th graders to 95% for 11th

graders, which is not expected and surprised us.

Table 13 Results of Responses for Arithmogon

Problem 1 Problem 2

Grade 8 11 8 11

Correct Answer 39% 90% 1% 1%

Got One Answer 38 24

Incorrect Answer 52 8 21 55

No Answer 9 2 40 20

*Data in this section are taken from Senuma,(1990)pp. 87-101,(1991)pp. 97-114
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Ways of Solution
As the ways of solving problems 1 and 2, we identified the following seven ways for

problem 1 and three for the problem 2.

* Problem 1 (Triangular Arithmogon)

1 Simultaneous linear equations with three variables.

Ex. x J- y = 63

y +z= 21
z + x = 38

2 Simultaneous linear equations with two variables.

Ex. x + y = 63

y + (38 x) = 21

3 Linear equation with one variable

Ex. (63 x) + (38 x) = 21

4 Sum of three numbers in squares (63, 38 and 21) is divided by 2,

or discovery of a numerical structure in the problem.

5 Systematic substitution.

Ex. Systematically substitute 10, 20, 30 and so on for the top circle.

6 Trial and error and/or guess.

Ex. First substitute an arbitrary number, say 25, for the top circle,

then adjust the numbers in the circles.

7 Others

* Problem 2 (Square Arithmogon)

8 Simultaneous linear equations with four variables

Ex. x + y = 23

y+z= 52
z+u=47
u + x = 18

9 Trial and error and/or guess

Ex. First substitute an arbitrary number, say 1, for the top left circle, then adjust the

numbers in the circles.

10 Others

Tables 14 and 15 show results for ways of solution for Problem 1 and for Problem 2,

respectively.
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In Problem 1,40% of eighth graders used only the trial and error/guess, and half of them

got correct answers. On the other hand, 10% of 8th graders got correct answers using linear

equations, among which the most common is simultaneous equations with three variables. Fifty-

nine percent of eleventh graders got the correct answer only by simultaneous equations with 3

variables, and in total 80% of 11th graders got the correct answer using at least an algebraic

method, i.e., linear equations.

In Problem 2, 35% of eighth graders are the type of "Got One Answer" by only trial and

error/guess. On the other hand, 50% ofeleventh graders could not get the correct answer by

simultaneous equations with 4 variables.

Table 14 Ways of Solution for Problem 1

Grade 8

Correct Wrong Total Correct

11

Wrong Total

1 Si. Eq. 7% 7% 14% 59% 4% 63%

3 vari.

2 Si. Eq. 2 2 4 1 1

2 vari.

3 Li. Eq. 1 1 1 2 2

4 Sum. div. 2 2

by 2

5 Sys. Sub. 3 1 4 2 2

6 Tri. Err. 21 19 40 5 1 6

7 Others 1 20 21 1 2 3

1 and 2 2 2

1 and 3 3 3

1 and 4 6 6

1 and 5 1 1 0 0

1 and 6 2 2 4 5 5

1 and 7 1 1 2 0 2

2 and 3 0 0
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2 and 6

and 4

1 1

- 1 1

4 and 5 1 1 0 0

4 and 6 0 0

6 and 7 1 1

1, 2,4 and 7 0 0

Table 15 Ways of Solution for Problem 2

Grade

Corr.

8

One.A Wrong Total Corr.

11

One.A Wrong Total

8 Si. Eq.

4 van.
9 Tri. Err.

10 Others

8 and 9

9 and 10

0%

1

0%

35

1

2

I

7%

5

9

7%

42

10

2

1

0%

0

0

5%

10

1

8

50%

1

3

0

56%

12

5

8

Many students were brought to their wits' end and stopped solving halfway through the

problem. Thus, "trial and error/ guess" led 8th graders to a correct answer or "Got One Answer";

on the other hand, "simultaneous equations" led 11th graders to incorrect answers.

The reason why the rate of eleventh graders in Problem 2 was less than for eighth graders

would be the fact that they applied the method, which was successful for Problem 1, to Problem 2.

When they made up simultaneous equations with four variables in Problem 2, the equations were

not linearly independent and could not have a unique solution. They would have difficulty and

trouble with it and reach the error. On the other hand, eighth graders who would use trial and error

and/or guess method could get a correct answer or at least one answer as a candidate.
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Areas of Squares*
This problem is for 11th grade in the upper secondary school.

Ways of Solution
Examining students' scripts, we identified and classified ways of solution for this problem

into following five categories:

Al Applying algebraic expression of degree 2.

Ex. Length of AB and AP are expressed as a and x, respectively.

y = x2+ (ax)2 = 2(xa/2)2 + a2/2. y is a minimum when x = a/2.

P is midpoint of AB.

A2 Computation of numerical value.

Ex. Let AB=10. AP=5, then sum of areas is 50; AP=6, then sum is 52; AP=7 then

sum is 58 and so on. AP is a minimum when AP=5.

A3 Drawing figures.

A4 Verbal explanation.

AS Others including no answer.

We added another viewpoint regarding correctness of answers, as follows:

B1 Correct answer. (Conclusion "Midpoint of AB" is indicated.)

B2 Incorrect or no answer.

Further, we paid attention to the reasoning of reaching a conclusion, and classified students

belonging to category B1 "correct answer" into the following six subcategories:

B11 General and deductive reasoning.

B12 General and deductive reasoning, but interrupted halfway.

B13 Concrete and inductive reasoning.

B14 Inappropriate reasoning.

B15 Wrong interpretation of the problem.

B16 Without reason.

We did the same for those belonging to category B2 "Incorrect or no answer".

*Data in this section are taken from T. Ishida, (1990) pp. 103-120, (1991) pp. 115-132

el 7
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Table 16 Ways of Solution for Areas of Squares

Al A2 A3 A4 AS Total

B 1 (Correct) 21% 25% 17% 13% 8% 83%

B 11 15 - 15

B12 5 - 5

B 13 21 17 4 42

B 14 1 4 9 1 14

B 15 - 0 0 1

B16 - - 7 7

B 2 (Incor.) 7 1 3 2 3 17

B 22 4 - 4

B 23 1 3 0 - 4

B 24 3 0 1 - 4

B 25 0 - 0 - 1

B 26 3 3

Total 28 26 20 15 12 100

Results are shown in Table 16. The rate of the correct conclusion, that is, the midpoint of

AB was indicated, is 83%. But, as we demanded both correctness of conclusion and valid

reasoning, only 15% of students satisfied both conditions.

We see that ways of solutions of students are from the most Al Applying algebraic

expression of degree 2, A2 Computation of numerical values and A3 Drawing figures. As to

reasoning, 46% of students based their solutions on concrete and inductive reasoning, and 24% of

them on general and deductive reasoning. It is unexpected that so many 11th graders used

inductive reasoning, in spite of the fact that they had studied mathematical reasoning for many

years.

Problems Made up by Students
Problems made up by students were classified into two categories, Valid and Invalid, and

they were subdivided into the following five subcategories:
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Valid Problems

I ordinary problems in mathematics.

2 ordinary problems in mathematics, though solution is self-evident

3 problems with insufficient conditions and insolvable immediately.

Invalid Problems

4 problems incapable to identify intention and unable to call problems.

5 problems interrupted halfway.

The number of valid problems made up by students was 380, or 92% of the total of 414

problems produced, and invalid ones were 8%. The mean number of valid problems made up per

student is 1.6
Valid problems are classified into the following four types, taking features of problems into

consideration:

a Similar to the original problem.

The problem has the following features which are characteristic of the given original

problem.
i) A variable point exists.

ii) At least two figures exist.

iii) Variables concerning the figure are identified.

iv) A problem asks for the position of a variable point when some conditions are

imposed on the variable.

Problems of this type are those made up changing some constituents of the

original problem.

b Converse of the original problem.

A typical problem is the one that asks the value of variable when the position of the

variable point is determined.

c Quasi-similar to the original problem.

The problem has two or three features of the original problem. Features are those

described in category "a".

d Dissimilar to the original problem.

The problem has one or no features of the original problem. That is, problems of this

type have little relevance to the original one.

Classification of valid problems into the above categories are shown below.
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Table 17 Type of Problems Made up by Students

Type a b c d

Rate of students 79% 4% 11% 6%

Seventy nine percent of students were of Type "a", and those of the others were small. It

is noticeable that students of Type "d" (problems dissimilar to original one) are only 6%. That is,

students usually made up problems changing some constituents of given original problem slightly.

More detailed analysis shows that in Type "a" problems, the most frequent change is from a square

to a triangle, and the next is from minimum to maximum.

Results of Questionnaire*

The survey included a questionnaire consisting of seven items to gather information about

students' attitudes toward mathematics and their opinions of the administered problems. We

concentrate on the results of the following two items. It is noted that results below exclude rate of

"neutral" answers.

Like or Dislike of Mathematics
First item was "Do you like Mathematics?" Results are shown below:

Table 18 Responses for "Do you like Mathematics?"

Grade 4 6 8 11

Like

Dislike

42%

6

34%

21

24%

27

18%

30

The rate of Japanese students who like mathematics decreases the higher the grade level. On the

contrary, the number of students who dislike mathematics increases dramatically the higher the

grade level. At grade four, only 6% dislike mathematics; but in grade eleven 30% of students

dislike it. This Japanese situation is very serious.

*Data in this section are taken from T. Ishida (1991) pp. 23-24
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Good or Not at Mathematics
Second item was "Are you good at Mathematics?" Results are shown below:

Table 19 Responses for "Are you good at Mathematics?"

Grade 4 6 8 11

Good 17% 17% 11% 6%

Not good 15 28 44 52

For this item, the results are very similar to the first. Rates of Japanese students who said

that they were good at mathematics are very low, at most 17%, and decrease the higher the grade

level. In grade eleven, only 6% of the students chose "good" and 52% chose "not good". This

Japanese situation is serious. We wonder if students are not confident in doing mathematics.

Final Remarks

1 Features of the Study

Usually an analysis of the results of problem solving in mathematics tends to focus on the

rates of correctness or incorrectness of answers. In this study, we tried to avoid that. Instead, we

considered correct and incorrect answers alternatively in pairs in terms of the ways of solution that

produced them. Then we related the rate of correct answers with the ways of solution or strategies

used.

2 Students' Approaches
In making the comparison between the two grades that solved the same problem, the

distribution of approaches for solution showed that the sophisticated approach produced the better

results. By sophisticated approach, we mean that the larger frequencies of correct answers can be

produced and have potential for forming more general solutions. From this point of view,

students' mathematical behaviors showed an acceptable tendency; that is, the major approach

chosen by students seemed to change from a naive one to a sophisticated one the higher the grade

level.
However, the Arithmogons problem is an exception. The eleventh graders were less

successful in comparison with eighth graders in solving problem 2. They seemed to rely on or

stick to the formal approach, simultaneous equations, and were unable to go back to a naive but

powerful one in terms of getting insight. In other words, they were not flexible enough to change

the approach from a sophisticated one, that produced the correct answer in problem 1, to a naive
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one, such as trial and error strategy.

3 Students' Mode of Explanation

The mode of explanation was another aspect to investigate students' problem solving

behaviors. In comparison of the results between the grades, we found students tended to use more
verbal and mathematical expressions as the grade level goes up. This tendency would reflect

everyday activities in mathematics classes in Japan. That is, students are used to communicating

their ideas about what they found out, between teacher and students, and between students using

mathematical expressions when they had finished the problem given in their classes.

Results also show the tendency to use mathematical expressions involving multiplication in

the elementary school. This tendency is even revealed in fourth graders in counting marbles in the

figure. Multiplication is introduced to students at second grade in the elementary school in Japan.

Therefore, the curriculum makes possible for them to express their ideas in a multiplication mode.

In addition, activities at lower grades such as composition and decomposition of numbers may

influence the results. Although these activities are usually not involved in representation of

operations, there surely could be some readiness activities for later mathematical formulation.

4 Problems Made up by Students

Problems made up by students seem to categorize within a certain range by changing the

conditions given in the original problem. In other words, students seem to be unwilling to break

through and create new problems. On the other hand, some created converse problems, which

have a mathematically rich nature to them.

5 Students' Attitudes toward Mathematics

It is reasonable to believe that students' attitudes toward mathematics are related positively

to their academic performance. For Japanese students, in particular, for upper grade students, it is

not the case. In fact, they performed well but they expressed feelings that they did not like

mathematics and were not good at mathematics, as the questionnaire data indicated. We wonder if

they were not confident in doing mathematics. This is a serious problem for Japanese mathematics

educators.
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Appendix

Marble arrangement(Grade 4)

How many marbles are there in the picture below?

o0 00 0 0 00 00 0 0 0 0 0 0
0000

O

Find the answer in as many different ways as you can.

Write your ways of findings the answer and write your answer.

Note: Following the presentation of the problem, six figures, each with a separate solution space,

were provided.
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Number of matchsticks (Grade 4, 6)

Squares are made by using matchsticks as shown in the picture. When the number of squares is

eight, how many matchsticks are used?

(1) Write your way of solution and the answer.
(2) Now make up your own problems like the one above and write them down.

Make up as many as you can. You do not need to find the answers to yourproblems.

(3) Choose the problem you think is the best from those you wrote down above,

and write the reason or reasons you think it is the best.

Note: Following the presentation of the problem : question (2), five separate solution

spaces were provided for making up problems.
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Number of marbles(Grade 6, 8)

Marbles are arranged as follows:

first second third fourth

o
O flP

.10 IP IP
OD

(1) How many marbles are there in the fourth place?

(2) How many marbles are there in the sixteenth place?

(3) How many marbles are there in the hundredth place?

(for 6th grade)

(4) How many marbles are there in the nth place?

(for 8th grade)
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Arithmogon (Grade 8, 11)

Problem 1

Given a three-sided arithmogon as in the figure below. We put three numbers in the three 0
--the number in each 0 must equal the sum of the numbers in the two() on either side.

Find the numbers for Oat each corner. The numbers in Omay be negative numbers. Do not

erase anything you write down, just draw a line through anything you feel is in error.

FIND THE ANSWER IN AS MANY DIFFERENT WAYS AS YOU CAN.

Problem 2

Now change to a square (four-sides) arithmogon as in the figure below. The number in each 0
must equal the sum of the numbers in the two() on either side.

Try to find the number for 0 at each corner.

If you need more space, write on the back of this page.
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Areas of squares (Grade 11)

Pick a point P on the line segment AB and make squares : one side of one is AP and one side of

the other is PB. Where should the point P be located to satisfy the condition that the sum of the

areas of the two squares is a minimum ?

Question 1 : Write a way of solution and the answer to the one above and write them down.

Question 2 : Now make up your own problems like the one above and write them down. Make

as many problems as you can.
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Discussion

J. Wilson:

Becker:

Kaida:

Teague:

Fujii:

Becker:

of Professor Miwa's and Professor Fujii's Paper

We have time for some discussion or questions. Does anyone have a question with

which they want to start, or a comment?

Jim, since we started a little late, it will be all right if we take more time for the

discussion. Also, Mr. Kaida would like to make a couple comments before we

begin.

As I mentioned, I am Seiichi Kaida. Iwill be translating and, during the discussion,

please give your name before you ask a question or make a comment.

I have a question about the problems that were selected for the research. You selected

five problems to give to the students. What characteristics or qualities of the

problems were important in their selection? Probably you had a number of problems

to choose from and you picked these five. Why these five?

First of all, they are all non-routine problems. Secondly, students were not familiar

with the problems. For instance, we have a national curriculum and if some problems

appeared in our textbooks, then the Japanese students would be familiar with them;

so, we tried to avoid that situation. Another characteristic of the problems that were

selected by the group (that means the Japanese and the American groups together)

was that since one of the things we were investigating was the performance of

students in developing several or many different ways to solve the same problem, we

had to have problems that lend themselves to that. There are not a lot of problems like

that around. Now, it happens that the Japanese have had some experience working in

the area which we call "open-ended' problem solving and have developed some

problems which we included in the research and which worked very well.

The arithmogons problem, which I learned about from an article in Mathematics

Teaching from England (I think McIntosh and Quadling were the authors) was an

interesting problem which lent itself to solution in a number of different ways and this

was, at least in part, the rationale for including it. Also, it lent itself to application of

algebraic techniques, to a certain extent a trial and error approach and to solving the

problem by recognizing some structure. There are some very different ways of

thinking about the problem, and finding a solution. Some of the ways are included in
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Appendix E of my paper. One other comment has to do with students' formulating

their own problems. If the structure of the problem is one of the things being looked

at, then the extent to which students, once they solve a problem, formulate another

problem(s) that has (have) the same structure is important. Once again, there are not a

lot of these problems around that have been tried out for research. We had some

problems that were proposed by the Japanese and after we all looked at them, we

thought they had the characteristics that we wanted.

Demana: On page 2 under 11-graders, it seems that all the categories have essentially the same

number of male and female subjects, but not here. Is there any significance to the

difference?

Fujii: In Japan, grades one through nine are compulsory education and, therefore, the

number of male and female students is just about the same everywhere. Although

from tenth grade on only those students who pass the entrance examination can go to

upper secondary school, the situation is the same, that is, the number of male and

female students is about the same. (In fact, about 95% of students go on to full-time

upper secondary school. ) But at upper secondary school, classes may be divided

into two or three courses according to students' preference. The math-science

oriented class may have more male than female in general. Such a situation reflects

the different number of male and female subjects.

Choate: I have a comment and a question. When you gave students the problems, did you

actually give them matchsticks to use, like in the matchstick problem, for example?

Fujii: No, we didn't.

Choate: There seems to be a method in how the problem was posed for students at different

ages - originally a problem was asked for ten matchsticks, at the next level for a

hundred, and then the next level n matchsticks. Was there a reason for this? Does

that reflect what the students are doing at that grade in the schools?

Becker: You made reference to the matchsticks problem, did you mean the marble problem?

Choate: Yes, it was the second marbles problem. Let me simplify my question. There seems

in the structure of the problems to be an implicit design of a progression for the
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students from a particular case to the general case. Is that what you were looking at?

Fujii: Yes, it was intentionally planned that way. Also, the solution to the problem can be

found in many different ways.

Becker: I have one other comment about that particular problem. It was used at grades six and

eight in Japan, but in the United States we used it at grades 6, 8 and 11- at grade 11

primarily because the U.S. researchers wondered whether our eleventh grade

students in algebra could successfully find the general rule or formula. We felt that,

perhaps, our eighth graders could not. And the problem lentitself to answering that

question.

Uetake: How much time were students given to solve the problems? Do you think that if

students were given more time, they could solve the problems better?

Miwa: The total time was limited to about one hour and, therefore, 15 minutes was allowed

for each of two problems. From past experience we thought that 15 minutes was

enough. Moreover, even if we were to have given more time, mostprobably students

won't be able to give correct answers in greater frequency.

Becker: We might also mention that after the Japanese and U.S. groups together decided

which problems would be used, we then tried the problems out in the U.S. at the

grade levels at which we intended to use them. Then the data were analyzed and

reported to our Japanese colleagues at a Tsukuba University meeting and,

subsequently, we revised the problems. As an example, for the arithmogons

problem, the numbers we used in the squares were too easy and led to a positive

solution only in the tryout. So, we revised the problem to its present form, in which

not all numbers in the circles are positive.

H. Wilson: I am interested in the marble problem and whether or not you analyzed whether a

student, in doing the problem in different ways, corrected a mistake. Suppose the

student made an error in an early attempt but then found a better or correct answer

later. Did that enter your analyses in any way?

Fujii: In this case of the marble problem, 97% of the students gave the correct answer,

therefore, your question is not relevant, in this case.
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Damarin: I'd like to ask about the mode of solution. In particular, in the two marbles problems

and the matchsticks problem, the problems themselves are presented in a figural

mode, and not in an algebraic or verbal mode. Were you surprised at the relatively

small number of students who used a figural mode in responding to them? Or

disappointed, perhaps, in that aspect of solutions?

Fujii: Well, this is my own opinion. A smaller number of students used figures to solve the

problem, which we had anticipated. What we focused on was that so many students

solved the problems using mathematical expressions. We thought that this was a

reflection of their education in mathematics and this was important to us.

Becker: At the eleventh grade level, the problems were stated almost purely in verbal terms,

and many students made a figure in their attempt to find a solution to the problem. In

one or two other cases, perhaps, the figural nature was a little less prominent.

J. Wilson: I am going to exercise the prerogative of the chair to declare that it is time for a break

and ask that we close this discusL,an. We will have a chance to discuss this data

further once Professor Becker's talk is given and the U.S. data are reported. Further

questions may be raised then. We will have the break in the Ramon Room and have

the full time for informal talk with refreshments.

End of Discussion
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RESULTS OF U.S.-JAPAN CROSS-CULTURAL RESEARCH ON

STUDENTS° PROBLEM SOLVING BEHAVIORS

Jerry P. Becker

Southern Illinois University at Carbondale

BACKGROUND
The data and results reported here are part of the project on U.S.-Japan Cross-national

Research on Students' Problem Solving Behaviors. The research has its origin in the U.S.-Japan

Seminar on Mathematical Problem Solving held at the East-West Center in Honolulu, July 14-18,

1986 (Becker and Miwa, 1987).* At that seminar nine U.S. and ten Japanese mathematics

educators met to examine the present state of problem solving, explore classroom practices in

problem solving, and, in general, to compare the situations in both countries relating to various

aspects of problem solving in the classrooms and research (Becker and Miwa, 1987, p. viii).

The last afternoon of the seminar dealt with future communication, exchange of materials and

planning cross-national collaborative research. Subsequently, research proposals were submitted,

on both sides, to the Division of International Programs of the National Science Foundation (NSF)

and the Japan Society For the Promotion of Science (JSPS), respectively, requesting support

under the U.S.-Japan Cooperative Science Program. A separate proposal was submitted to the

Research in Teaching and Learning Program in the National Science Foundation. The proposals

were subsequently funded and the research commenced with a meeting of the U.S. and Japanese

groups at the University of Tsukuba in Fall 1988.** The U.S. group made visits to Japanese

schools and observed numerous problem solving lessons preliminary to conducting the research

(Becker, Silver, Kantowski, Travers, and Wilson, 1990). These visits and the related discussions

set the stage for the research which was further broadened and deepened by a visit to the U.S. in

the Fall 1989 by the Japanese group which made similarclassroom visits followed by further

discussions and planning.

* The Seminar was supported by the U.S. National Science Foundation (Grant No. INT-
8514988) and the Japan Society For the Promotion of Science.

** Members of the groups were: U.S.: Jerry P. Becker (Coordinator), Edward A. Silver, Mary
Grace Kantowski, Kenneth J. Travers, and James W. Wilson; Japan: Tatsuro Miwa
(Coordinator), Shigeru Shimada, Toshio Sawada, Tadao Ishida, Yoshihiko Hashimoto,
Nobuhiko Nohda, Yoshishige Sugiyama, Eizo Nagasaki, Toshiakira Fujii, Shigeo
Yoshikawa, Hanako Senuma, Junichi Ishida, Toshiko Kaji, Katsuhiko Shimizu, and Minoru

Yoshida.
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PROCEDURES AND METHODOLOGY
The U.S. and Japanese groups, hereafter referred to as the group, made decisions to collect

problem solving data at the 4th, 6th, 8th and 11th grade school levels, as well as data for

preservice elementary and secondary teachers. Problems were selected and administered as

follows: one problem at the 4th grade only; one problem at both the 4th and 6th grades; one

problem at both the 6th and 8th grades; one problem at both the 8th and 11th grades (in the U.S.

case, two problems), and one problem at the 1 1 th grade only. Several of the problems were also

used for data collection with preservice teachers.

In addition to the problems, student questionnaires were developed to gather information

about students "liking" and "good at" math and their reactions to each of the problems in the

research. A teacher questionnaire was also developed to collect information about the schools,

teachers' views of their classes, their reactions to the problems and their perceptions of how

seriously students worked on the problems. In addition, a set of instructions was developed for

use by proctors when the problem booklets were administered.

These materials were developed into preliminary form during the winter, 1988-89 following

the Fall, 1988 meeting of the group in Japan. They were "tried out" in the Spring 1989 in

classrooms in the Carbondale, IL area. The results were tabulated, reported and discussed at the

group's second meeting in Japan in Fall 1989 (Becker, 1989). Subsequently, the materials were

revised and fmalized for data collection, which occurred at about the same point in each country's

school year during 1989-90.

In the formal data collection phase, subjects were given fifteen minutes to work on each of

two problems (three at 11th grade) and were asked to write down all their work and to "line out"

rather than erase writing. Further, proctors were directed if and when subjects asked questions, to

respond by saying "I leave it to your judgment" or "please judge for yourself." In general,

students worked on the problems, asking no questions. Each problem was read aloud by the

proctor before subjects began work and subjects were stopped promptly after fifteen minutes on

each of the two problems (and after ten minutes on the third at the 11th grade). Subjects then filled

out the questionnaire during the last five minutes of the class period. Teachers filled out their

questionnaire while the problems were being administered. Total time elapsed was forty-five

minutes, the usual length of class periods in the schools.

U.S. data for each problem in the study were collected by the five U.S. researchers (Jerry

Becker, Kenneth Travers, Edward Silver, Mary Grace Kantowski and James Wilson) in their

respective centers around Carbondale (IL), Champaign/Urbana (IL), Pittsburgh (PA), Gainesville

(FL), and Athens (GA). In general, for all grade levels, students were attending small or large

urban schools. Schools were purposely selected to provide this mix, although the selection of

44 f-4



schools and classes within a school was not made in a random manner.

Each researcher analyzed data for mig problem which were collected at the four grade levels

at each of the centers:

Name of problem Grade(s) Researcher

Marble Arrangement 4 Edward Silver

Matchsticks 4,6 Kenneth Travers

Marble Pattern 6,8,11 Mary Grace Kantowski

Arithmogons 8,11 Jerry Becker

Area of Squares 11 James Wilson

Some of the results for the U.S. sample are reported here, based on drafts of reports by

Silver, Travers, Kantowski, Becker and Wilson. The results for the Japanese data are reported in

Miwa (1991, 1992). Becker and Silver include comparisons to Japanese results in their reports.

Marble Arrangement Problem/Grade 4

Data for the Marble Arrangement Problem were analyzed and reported by Silver, Leung,

and Cai (1991). The problem was presented to subjects as depicted below, followed by nine

solution spaces (each with a figure). Ways of students' thinking about the problem are given in

Appendix A.

Problem I

How many marbles are there in the picture below?

0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0

0
0 o
0 0
0 0
0

0

FIND THE ANSWER IN AS MANY DIFFERENT WAYS AS YOU CAN. Write your

ways of finding the answer and write your answer.

Silver et al. (1991) used the same basic coding scheme reported in Nagasaki and

Yix7rikawa (1989), Nagasaki (1990), and Nagasaki (1991/ in Miwa (1991)): solution strategy and

mode of explanation, with several different categories for each. Results were reported in four
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parts: Responses, Solution Strategies, Mode of Explanations, and Questionnaire Responses.

There were 151 students (83 boys/68 girls) in the U.S. and 206 students (102 boys/104 girls) in

the Japanese samples. A summary of Japanese results is included in their report as well as a

comparison of U.S. and Japanese results which are briefly summarized here (pp. 16-20).

A significantly larger percentage (96%) of Japanese students have all correct answers than

U.S. students (66%). While there were no significant gender differences in the Japanese results,

there were in the U.S., favoring girls. The overall mean numbers of solutions among students

giving all correct answers were 7.5 (Japan) and 5.8 (U.S.), which are significantly different. The

distributions for solution strategies in the two countries were similar: 90% of students used a

"Finding a Structure" strategy at least once, 60% used a strategy of "Enumeration," and less than

5% used a "Change the Structure" strategy. For the two countries, about 33% of U.S. students

and 50% of Japanese changed strategies from the first to the fifth response, and when they

switched, it was from a primitive to a more advanced one (i.e., from "Enumeration" to "Finding a

Structure" to "Change the Structure"). For both countries, students who got correct solutions used

"Grouping of Marbles" (36% U.S., 51% Japan). There were more solutions by "Displacement"

or "Addition of Marbles" among Japanese than U.S. students, and similarly for "Mathematical

Expressions," Finally, there were more "Incomprehensible" solutions among U.S. than Japanese

students.

With respect to Mode of Explanation, students in both countries who got all correct

answers used both "Figures" and "Words" with the same frequency (about 60%), and more

Japanese than U.S. students used "Words." In the U.S., about 20% of students used "Figures"

and 20% used "Words," while in Japan less than 5% "Figures," but 36% "Words" only. With

respect to verbal and mathematical expressions in Mode of Explanation, Japanese students used

mathematical expressions (59% of all responses) while U.S. students had a strong tendency to use

verbal expressions (84% of all responses). Further and importantly, Japanese students tended to

use multiplication while U.S. students used addition.

Results showed, from students' presentations of solutions, that Japanese students are more

used to solving a problem in different ways and are able to effectively communicate their ideas in

writing. We do no know the reason(s) for this, nor the reason(s) why Japanese students more

commonly use mathematical expressions, while U.S. students use verbal expressions, and

Japanese students use multiplication, while U.S. students use addition. Perhaps the reason is the

activities in the mathematics curriculum - the teaching and the books.

The authors summarize their findings by noting that students are willing and able to provide

multiple approaches to finding the solution to the problem when they are asked to do so and,

further, that there is a tendency to use simpler strategies first, and if there is a switch to a different

strategy, the tendency is to switch from "Enumeration" to "Find a Structure," or "Change a
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Structure." This move appears to be natural to students in both countries.

Matchsticks Problem/Grades 4 and 6
Data for the Matchsticks problem were analyzed and reported by Travers (1991). The

problem was presented to subjects as depicted below, followed by spaces in which students could

write their way of solution (part 1), write the it own problems (part 2) and write the number of their

favorite problem and the associated reason (part 3). Ways of students' thinking about the problem

are given in Appendix B.

Problem II

Squares are made by using matchsticks as shown in the picture below. When the

number of squares is eight, how many matchsticks are used?

DO NOT ERASE ANYTHING YOU WRITEDOWN; JUST DRAW A LINE
THROUGH ANYTHING YOU FEEL IS IN ERROR.

(1) Write a way of solution and the answer to the problem above.

(2) Now make up your own problems like the one above and write them down. Make as
many problems as you can. You do not need to find the answers to your problems.

(3) Choose the one problem you think is best from those you wrote down above, and
write the number of the problem in the space:

Write the reason or reasons you think it is best.

In analyzing the data, Travers used the same basic scheme proposed by Japanese

colleagues, with some differences (p. 1), according to the following aspects:

1. Rate of correct answer

2. Methods of solution used to solve the problem

A. Breakdown of problems

B. Use of drawings

3. Problems made up by students

A. Type of problem
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B. Comparison to Matchsticks problem

1. Object asked for

2. Use of overlap (shared side)

3. Increased dimensions

C. Use of illustration

4. The problem chosen as best

5. Responses to the questionnaires

There were 208 subjects in the U.S. sample: 84 at fourth grade (48 boys/36 girls), 19 at fifth grade

(13 boys/6 girls), 105 at sixth grade (45 boys/60 girls).

Results in each section were examined with respect to grade level, sex, and correctness of

response for the first aspect. The first three aspects are also examined for relationships among the

centers in which students are located, and the relation between method of solution to the given

problem and the questionnaire results are examined lastly.

The rates of correct answers were 37% for fourth grade, 58% for fifth, and 52% for sixth.

Travers notes that the fifth grade class, which had the highest success rate for all classes at the five

centers was above average and small (N=19). Overall, male subjects' rate of correct response was

more than ten percentage points higher than that of girls in four of five centers.

Subjects' methods of solutions were categorized as (1) Repetition of Squares (or groups of

three matchsticks (e.g.,CCE...), (2) Draw a Picture and/or Count Matchsticks (without using a

pattern), and (3) Other (i.e., all other methods). Travers reports that: fourth grade subjects used

Drawing/Counting predominantly (70%) and far less frequently used Repetition of Squares (7%);

46% of sixth grade subjects used Drawing/Counting and 30% used Repetition of Squares; 42% of

fifth-grade subjects (gifted students) used Repetition of Squares and 37% used Drawing/

Counting. From 21 to 24% of subjects among grade levels 4,5 and 6 used "other" methods of

finding their answers. (Note: Travers does not provide examples of these.)

Travers reports no gender differences for methods used to solve the Matchsticks problem

for fourth-grade subjects. Both genders used Drawing/Counting most often, and Repetition of

Squares less frequently. But the results for sixth grade subjects are different; girls more frequently

(37%) than boys (22%) use Repetition of Squares; and boys more frequently than girls use

Drawing/ Counting (49% and 43%, respectively) and other strategies (49% and 43%,

respectively).

For both fourth and sixth grade subjects, those who got the correct answer more frequently

use Counting than Repetition of Squares than subjects whose responses were incorrect. In both

categories (correct/incorrect), however, the majority of subjects used Drawing/Counting, except

for sixth grade subjects who answered incorrectly. In this group, 44% used Repetition of Squares
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and 26% used Drawing/Counting the majority of boys (53%) used Repetition of Squares while

girls (35%) used Drawing/Counting. According to Travers, regardless of grade, sex, or

correctness, more than 60% of all other groups used Drawing/ Counting. Overall, sixth-grade

subjects were more likely to solve the problem using Repetition than fourth-grade subjects, but

subjects who use Drawing/Counting were more frequently correct than those who used Repetition

of Squares, regardless of sex (perhaps these subjects overlooked the "last" vertical matchstick).

Travers found that students used drawings in solving the problem at all grade levels: 70%

for fourth grade, 79% for fifth, and 71% for sixth. Thus, use of drawings appears quite consistent

for all grade levels. What is interesting about this is that drawings are unnecessary and subjects

can find the answer using a multitude of solution approaches (e.g., 8x3+1=25; 4+7x3=25;

8x2+9=25; 8x2+8+1=25; 6x4+1=25), though drawings can be helpful using these approaches

too. What is not clear from the data analysis is whether drawing all eight squares first more or less

implies counting to find the answer. Further, Travers's results show that, for fourth grade

subjects, 78% of girls and 65% of boys used a drawing, but for sixth-grade subjects the difference

was negligible. In addition, whether or not subjects got a correct solution, a majority of both

genders used drawings, and 42% of fourth and 63% of sixth grade subjects who used drawings

got the correct answer, compared to 24% of fourth and 27% of sixth grade subjects who did not.

Drawings appear to be an important crutch for U.S. fourth and sixth grade subjects in solving the

Matchsticks Problem.

We turn now to the results for problems formulated by subjects, after they solved or

attempted to solve the Matchsticks Problem. Travers cites Japanese results for this problem that

indicate that "the first problem is most likely to reflect students' initial impression of the given

problem" (p. 6). Problems formulated by subjects were divided into four categories: problems

similar to the given problem (a repeating pattern is given and a number of parts must be determined

given the repetition of the pattern), basic arithmetical problems, problems involving simple

counting or measuring, and all other problems. No examples of problems in each category are

given.
The analyses show that sixth grade subjects (56%) more than fourth grade subjects (25%)

were able to formulate problems similar to the Matchsticks Problem, while 58% of fifth grade

subjects produced similar problems. For fourth grade subjects, 50% formulated problems in the

"other" category, many of which were unintelligible, though subjects may have intended to create

problems which would have been classified in other categories. For this reason, Travers did not

further compare, by grade level, problems made by subjects in the other categories.

Boys (65%) more than girls (50%) created problems in the "other" category among fourth-

grade subjects. However, at the sixth grade level, boys produced more problems similar to the

given problem (62%) than girls (52%). Girls formulated more arithmetical problems (17%) than
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boys (9%). For both fourth-grade boys and girls, those who got a correct solution produced

similar problems (35%) more frequently than subjects who answered incorrectly (22%).

Apparently these subjects saw a pattern or structure which facilitated formulation of a problem

similar to the given one.

For sixth grade subjects, 58% and 54% of subjects who got a correct or incorrect answer,

respectively, formulated similar problems. For those who answered incorrectly, gender made little

difference; however, for subjects answering correctly, 68% of boys and 50% of girls formulated

similar problems.

Travers further analyzed data for subjects who created problems categorized as similar to

the Matchsticks Problem. The vast majority of such subjects posed simple extensions of the

original problem (e.g., how many matchsticks if the number of squares is, say, 12 ). The number

of subjects who posed problems asking something different was very small - too small to analyze

in terms of gender, grade, or rate of correctness. The most common of such posed problems was

the converse problem (i.e., given, say, 52 matchsticks, how many squares can be made?).

The second dimension of analysis concerned the shared-side characteristic of the

Matchsticks Problem. Subject-formulated problems were categorized as Retaining Shared Side,

Changing the Shared Side Characteristic, Eliminating the Shared Side, and Unclear on the

Condition of Shared Side. For both fourth and sixth grade subjects: 33% and 34%, respectively,

retained the Shared Side Characteristic, 10% at each grade level changed it, and 48% of fourth and

44% of sixth grade subjects did not include the condition. There were similar results for grade five

subjects. No gender differences were found. Correctness, however, was found to be related to

the use of the shared-side characteristic: 37% of subjects getting a correct answer used the shared-

side characteristic in their problems, while 25% who got incorrect answers retained the condition.

The difference was consistent for both gender and grade level. Travers comments that since one

key to getting a correct answer involves the shared side idea, it is expected that subjects who

solved the problem correctly would more likely include the condition in formulating their problems

(p. 10).
Some subjects also formulated problems with two or three dimensional arrays of squares

(i.e., two or three rows stacked up and sharing horizontal as well as vertical sides) or "special

forms" in which unit figures form a pyramid, a circle, or a set of concentric circles. However, the

number of such problems was small and "one-row" problems dominated across genders, grade

levels, and rate of correct responses given by subjects. In formulating problems, subjects nearly

always used a figure or illustration.

In analyzing the results for the problem chosen as the best one, Travers organized data into

five categories: hardest, easiest, content of the problem (i.e., because it has fractions), value of the

problem (i.e., different or has educational value), and all other responses (i.e., "fun", "neat" or
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"best"). The analyses showed clearly that for both genders and grade levels and for rate of

correctness, the reason subjects most frequently gave was that it was the hardest.

Finally, tabulation of questionnaire responses showed that:

* Subjects found the problem interesting (slightly more than 50%) at both grade levels.

* Subjects found the problem easy at both grade levels (50% for fourth grade and 55% for

sixth).

* Fourth-grade (52%) and sixth-grade (34%) found the problem different from problems

in their textbooks, and few subjects thought the problem was the same.

* 62% of fourth grade and 50% of sixth grade subjects "like Math". Few subjects at either

grade level said they "dislike Math".

* 49% of fourth-grade and 31% of sixth-grade subjects feel they are "good at Math." Few

subjects at either grade level feel they are not good at Math. For subjects at both grade

levels who got the correct answer to the Matchsticks Problem, 49% reported they were

"good at Math" while 37% of those with incorrect answers reported the same. The

difference was more marked for boys than girls at each grade level.

* Slightly more than 50% of students liked the problem more than textbook problems.

* 49% of fourth and 75% of sixth-grade subjects responded that they had seen problems

like this one before, which seems inconsistent with performance.

liadlePatiraiableavaStrasirafatall
Data for the Max L,e Pattern Problem were analyzed and reported by Kantowski (1991).

The problem was presented to subjects as depicted below, followed by five solution spaces. Ways

of students' thinking about the problem are given in Appendix C.
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Problem I

Marbles are arranged as follows:

first second

0
third

90

fourth

Do not erase anything you write down, just draw a line through anything you feel is in
error.

(1) How many marbles are there in the fourth place?

FIND THE ANSWER IN AS MANY DIFFERENT WAYS AS YOU CAN. Write your
way of solution and the answer.

(2) How many marbles are there in the sixteenth place?

Show your way of solution and your answer.

(3) Try to find a formula for finding the number of marbles in the one hundredth place.

There was a total of 794 students in the U.S. sample: 179 at grade 6, 368 at grade 8, and

247 at grade 11. No numbers for gender are given. In reporting her analyses, Kantowski states

and provides results for the ten questions that follow.

1. What is the total number of approaches used by students at each grade level to find the correct

response to question 1 in the Marble Pattern Problem?

For this statistic, students were given one point for each approach they wrote. If the same

solution process was used more than once, but in a slightly different format, the student was

given more than one point for one process. The maximum number of approaches for any

given student was 6 and the minimum was 0. The only significant difference in total number

of approaches was by grade-level - sixth grade students did not show as many approaches as

students at grades eight and eleven.

52



Total number of approaches by grade level for U.S. students - Question 1 for
Marble Pattern Problem

Cada Akan Standard Deviation

6 1.92 1.46

8 2.20 ' .21

11 2.09 1.11

2. How many different approaches did students in each grade level use to find the correct

response to question 1 of the Marble Pattern Problem?

For this statistic, students were given one point for each different solution process used.

The maximum number of different approaches for any student was 5 and the minimum was

O.

Again, the only significant difference in total number of different approaches used was by

grade level sixth grade students had significantly fewer different approaches than students at

grade levels eight and eleven.

Total number of different approaches by grade level for U.S. students -
Question 1 for Marble Pattern Problem

Grade Mon Standard Deviation

6 1.58 1.15

8 1.91 1.04

11 1.91 1.00

3. What percentage of students at each grade level obtained at least one correct solution for

question 1, question 2 and question 3 of the Marble Pattern Problem?

Since question 3 on the 6th and 8th grade survey was different from question 3 on the 1 1 th

grade survey, there can be no valid comparisons between grades 6 and 11 and grades 8 and

11 on question 3. The lower two grades were asked to find the number of marbles in the

100th place, whereas the 11th grade students were asked to find a formula for the number of

marbles in the n-th place.

82% of all 6th grade students were correct on question 1

93% of all 8th grade students were correct on question 1

96% of all 11th grade students were correct on question 1

7
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26% of all 6th grade students were correct on question 2

53% of all 8th grade students were correct on question 2

68% of all 11th grade students were correct on question 2

17% of all 6th grade students were correct on question 3

30% of all 8th grade students were correct on question 3

40% of all 11th grade students were correct on question 3

91% of all female students were correct on question 1

92% of all male students were correct on question 1

55% of all female students were correct on question 2

48% of all male students were correct on question 2

26% of all 6&8th grade female students were correct on question 3

25% of all 6&8th grade male students were correct on question 3

36% of all 11th grade female students were correct on question 3

44% of all 11th grade male students were correct on question 3

4. How often was each approach used at the three grade levels for question 1 of the Marble

Pattern Problem? The results appear as percentages for each grade, for each approach.

Approaches 2 (which was 4+5+6+7) and 3 (which was 7+6+5+4) were scored separately

since many students seemed to focus on the bottom line of the trapezoid and therefore went to

great lengths to determine the number of marbles on the fourth row, and then add upwards.

Net gain indicates that the student visualized one row being taken from the top and a new one

added to the bottom (-4+8=+4). The pattern approach (10, 14, 18, 22) was indicated by a

table. The +1 each row approach was sometimes indicated with a picture and sometimes not.

An attempt was made to distinguish between students who used a picture for this process and

students who did not, but it was always possible since, in many cases, a picture might appear

with another solution but not with the +1 process. Unique solutions were those used by 5 or

fewer students - in the 6th and 8th grades, a formula was considered unique since few

students used that approach.
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Approaches used by students for question 1 for the Marble Pattern Problem

Approach Grade 6 Grade 8 Grade 11

(%) (%) (%)

1 counting 31 31 43

2 adding 4+5+6+7 20 23 27

3 adding 7+6+5+4 6 3 7

4 net gain 1 4 4

5 pattern +4 38 59 52

6 +1 each row 37 48 23

7 group 10+3(4) 11 11 9

8 group 4(4)46 7 8 11

9 group other 3 2 2

13 unique 4 3 5

14 formula - 8

Note: Percentages do not add to 100 because students used more than one approach.

5. How often was each approach used at each of the three grade levels for question 2 of the

Marble Pattern Problem? The results appear as percentages for each grade, for each

approach.

Approaches used by students for question 2 for the Marble Pattern Problem

Approach Grade 6,

(%)

Grade 8 Grade 11

(%) (%)

1 counting 2 4 1

2 add 16+17+18+19 12 14 17

3 add 19+18+17+16 1 1 5

4 pattern table 4 18 25

5 16(4)+6 2 5 8

6 15(4)+10 2 5 8

7 22+4(12) 0 0 0

8 Unique 0 0 0

6. How often was each approach used at the 6th and 8th grade levels for questiork 3 of the

Marble Pattern Problem? The results appear as percentages for each grade, for each

approach.
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Approaches used by students for question 3 for the Marble Pattern Problem

4214211111 Grade 6 Grade 8

(%)(%)

1 100+101+102+103 11 14

2 Pattern with gaps 0 2

3 4(100)+6 1 4

4 4(99)+10 3 5

5 22+4(96) 2 2

6 Formula 1 3

7. How often was each approach used in grade 11 for question 3 of the Marble Pattern

Problem? The results appear as percentages for each grade, for each approach.

Approaches used by students for question 3 for the Marble Pattern Problem

Approch Grade 11.

(%)

1 Pattern Table (with gaps) 2

2 4n+6 18

3 4(n--1)+10 11

4 n+n+1+n+2+n+3 7

5 Unique 2

8. Of those students who found correct solutions for both question 1 and question 2, what

percent used an approach used in question 1 to solve question 2?

69% of all students having a correct answer for questions 1 and 2 used an approach used for

question 1 to solve question 2.

9. Of those 6th and 8th grade students who found correct solutions for both question 2 and

question 3, what percent used an approach used in question 2 to solve question 3?

90% of 6th and 8th graders who were correct on questions 2 and 3 used the same approach

on both problems.

10. What percent of students at each grade level used incomprehensible approaches for

question 1?

7 6
56



20% of all 6th grade students used incomprehensibleapproaches for question 1.

30% of all 8th grade students used incomprehensible approaches for question 1.

13% of all 11th grade students used incomprehensible approaches for question 1.

22% of all females used incomprehensible approaches for question 1.

23% of all males used incomprehensible approaches for question 1.

Arithmogons Problems / Grades 8 and 11

Data for the Arithmogons Problems were analyzed and reported by Becker and Owens

(1991). The problems were presented to subjects as depicted below, followed by five solution

spaces for the three-sided Arithmogon problem and space, as shown, for the four-sided

Arithmogon Problem. Ways of students' thinking about the problem are given in Appendix D.

Problem II

Given a three-sided arithmogon as in the figure below. We put three numbers

in the three - the number in each must equal the sum of the numbers

in the two° on either side.

Find the numbers for 0 at each corner. The numbers in 0may be negative

numbers.

Do not erase anything you write down, just draw a line through anything you feel is in

error.

FIND THE ANSWER IN AS MANY Dll-PERENT WAYS AS YOU CAN.

(2) Now change to a square (four-sided) arithrnogon as in the figure below. The number in

each must equal the sum of the numbers in the two 0 on either side.

Try to find the numbers for 0 at each corner
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There were 368 (178 male and 190 female) eighth-grade students in mathematics classes in

the Carbondale (IL), Champaign/Urbana (IL), Pittsburgh (PA), Gainesville (FL), and Athens

(GA) centers. There were 246 (124 male and 122 female) eleventh grade students from the same

centers, except Champaign/Urbana (IL). U.S. results were compared to those of the Japanese,

sample for which included 189 (96 males and 93 females) eighth-grade students and 234 (135

males and 99 females) eleventh-grade students.

A method of scoring devised by Japanese researchers (Senuma and Nohda, 1989) and

reported in Miwa (1991) was used. At each grade level, problems were scored correct/

incorrect/not-attempts, number of different ways of solving the problems, ways leading to

correct/incorrect solutions, and success of students on 122/ problems. Two persons independently

scored student scripts. Tabulations were made of student responses on the questionnaire and were

related to overall performance on the problems; similarly for the teacher questionnaire.

A brief, concise summary of U.S. and Japanese results is given below.

Teacher Questionnaire

U.S.: Students accepted the problems, liked them, found them challenging, and

represented their best effort. Teachers liked the problems, thought them to be

"thinking" problems, said more such problems are needed in the curriculum, said

their students gave their best effort, and that this is the first such experience of

their students with such problems.

Japan: No information

student Performance on Problems

8th Grade

Problem I: U.S.: 15% got correct solution

(more males correct

than females)

Japan: 39% got correct solution

Problem U: U.S.: 26% got one correct solution

Japan: 39% got one correct solution

Approaches ilaral
8th Grade

Problem U.S.: Almost all subjects used Trial &

Error

58 78

U.S.:

Japan:

11th Grade

46% got correct solution

(male/female differences

small)

90% got correct solution

U.S.: 55% got one correct solution

Japan: 25% got one correct solution

U.S.:

11th Grade

Almost all subjects used Trial

& Error (only 6% used

simultaneous equations and

got a solution)



8th Grade

Number of subjects who used

more than one approach negligible

Large number did not understand

the problem

Many did not know how to use

negative numbers

Japan: 19% used simultaneous

equations

44% used Trial & Error

29% used other approaches

8% no solution

Whatever approach used, was

used successfully

Japan:

Problem U: U.S.: Almost all used Trial & Error U.S.:

Large number did not understand/

try problem

Very few subjects noticed < 10/614 >

there was more than one (2%)

solution

Japan: 42% used Trial & Error

9% used simultaneous equations

10% used other approaches

40% got no solution

Student Questionnaire

U.S.: Like math, feel they are good at math,

found the problems interesting, thought

the problems difficult, felt problems

different from textbook problems and like

problems less than textbook problems
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I I th Grade

Number of subjects who used

more than one approach

negligible

Large number did not

understand the problem

Many did not know how to use

negative numbers, though

fewer than 8th grade subjects

82% used simultaneous

equations

8% used Trial & Error

7% used other approaches

3% no solution

Whatever approach used, was

used successfully

Almost all used Trial & Error

About half did not understand/

try problem

Very few subjects noticed there

was more than one solution

Japan: 12% used Trial & Error

64% used simultaneous

equations

5% used other approaches

20% got no solution

Like math, feel they are good at

math, found the problems interesting,

thought the problems difficult, felt

the problems different from textbook

problems, and like the problems more

than textbook problems.
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8th Grade

Japan: 24% like, 27% dislike, and 49% neutral

about math; feel not good at math,

problems not interesting, problems

difficult, problems different from

textbook problems and like less than

textbook problems

I 1 th Grade

18% like, 29% dislike, and 53% neutral

about math; not good at math, problems

interesting and not interesting in equal

percents and remainder neutral (39%),

problems difficult, problems different

from textbook problems, and small

tendency towards liking problems more

than textbook problems (half neutral)

For the first problem, at the eighth grade level, Japanese subjects performed much better

than U.S. subjects, with no gender differences for the Japanese and small differences for the U.S.

At the eleventh grade, the differences are even more striking, favoring the Japanese, with no

gender differences for either sample. For the second problem, Japanese eighth grade subjects

again perform better than U.S. with no gender differences. At the eleventh grade, the results are

reversed, with no gender differences in either sample. It is not clear why the reverse results

occurred, though a possible and likely explanation is that since there were 15 minutes allowed for

subjects to do both problems and Japanese subjects commonly used simultaneous equations for the

first problem (82%), perhaps there was too little time left for the second one (for which 64% used

the same approach with four variables, in contrast to U.S. subjects who used Trial and Error

commonly, which is an approach that would work starting with any integer). Further, Japanese

eleventh grade students already have a good familiarity with algebraic methods which they begin to

learn in the seventh and eighth grades. In contrast, U.S. students do not have this same degree of

familiarity, usually beginning study of algebra in grade 9. It is also noteworthy that U.S. subjects,

at both grade levels, displayed difficulties with negative integers, in contrast to the Japanese.

Finally, we also note that (1) Japanese, more than U.S. subjects, were more successful whatever

the approach used (accuracy is important!), (2) at both grade levels, U.S. subjects more than

Japanese, fairly strongly like math and feel they are good at math, but the Japanese perform better,

while, in contrast, Japanese subjects strongly feel either neutral about or dislike math, and (3)

Japanese subjects appear to be more "fluent" in mathematics shown by a wider diversity of

approaches used in solving the problems.

Area of Squares Problem / Grade 11
Data for the Area of Squares Problem were analyzed and reported by Wilson (1991). The

problem was presented to subjects as depicted below. Ways of students' thinking about the

problem are given in Appendix E.
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Problem I

Pick a point P on the line segment AB and make squares: one side of one is AP and

one side of the other is PB . Where should the point P be located to satisfy the

condition that the sum of the areas of the two squares is a minimum?

(1)

(2)

(3)

Do not erase anything you write down, just draw a line through anything you feel is in error.

Write a way of solution and the answer to the above problem.

Now make up your own problems like the one above and write them down. Make as many
problems as you can. You do not need to find the answers to your problem.

Choose the problem you think is best from those you wrote down above and write the
number of the problem in the space:

Write the reason or reasons you think it is best.

The problem was attempted by 247 U.S. algebra II students. No numbers for gender are

given. The Japanese report, giving a preliminary analysis of data for this problem for Japanese

1 1 th graders, showed that only 14% gave correct answers that included complete solutions

(Wilson, p. 6). Wilson points out that, in the Japanese scoring scheme, inductive approaches such

as calculating areas or developing intuition by drawing pictures were called "inappropriate

reasoning, correct answer in the end" (p. 6).

Problem booklets for one algebra II class were examined and the following scoring

categories were developed by Wilson. Independent scorers showed close agreement when using

these categories for that class, so that 247 booklets were scored accordingly:

A. The student produced a drawing or sketch that was a reasonable interpretation of the

problem.

B . The student produced some work in addition to or without a drawing to show

some understanding of the problem.

C. The student produced an argument, line of reasoning, or sequence of steps leading to a

correct answer.

D. The student produced the correct answer.

E. The student explicitly said "I do not understand [ the problem ]."

The percentage of students in each of the categories is shown in the table below. Data are

given for each U.S. center as well as for the total. An additional line in the table presents data for

48 preservice secondary mathematics teachers.
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InctaLRiamataLialatAreaLuLawiare,

N A

Center 1 48 81.3 39.6 39.6 85.4 0.0
Center 2 33 69.7 51.5 39.4 81.8 3.0

Center 3 50 80.0 38.0 38.0 80.0 0.0
Center 4 116 85.3 65.5 46.6 73.3 7.8
TOTAL 247 81.4 53.0 42.5 78.1 4.0
Preservice

Sec. Math

Teachers 48 56.3 68.8 72.9 75.0 0.0
Japanese

11th Grade 84.0

N = Number of Students Tested

A = Made a reasonably correct drawing or sketch

B = Something beyond the drawing to show some understanding of the problem

C = Reasoning or argument presented

D = Answer "In the middle," "at the midpoint," or equivalent

E = Explicitly write "I do not understand [the problem]"

* The Japanese did not use this scoring scheme. Data were not collected in one U.S. center.

Draw a figure. Wilson reports that more than 80% of students produced a drawing

that was a reasonably correct interpretation of the problem statement. These drawings were about

equally divided between drawing the squares on opposite sides of AB and drawing them on the

same side, as below:

P

A B A

Many students made only a drawing with P at the midpoint and wrote a correct answer. It would

seem that these students already had some intuition that P should be at the midpoint and made the
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drawing to fit that intuition. This is reasonable in that the symmetry of the situation would allow

the midpoint as the only unique placement for P, but no student made an explicit argument of the

symmetry.
It is encouraging that 80% of students could make a problem translation from the verbal

mode to an iconic one, as reported by Wilson, but it is discouraging that so many students

reasoned only from their drawing. For preservice teachers, only 56% made a drawing. In part this

was probably due to a number of them producing calculus solutions setting up a function, taking

the derivative, setting the derivative equal to 0, and solving -- without making a drawing.

evidence of understanding: This category was checked if the student made a verbal

restatement of the problem, drew multiple drawings to show P could vary along AB, or provided

an incomplete argument before writing the correct answer. The category was used to categorize

cases in which the student made some progress to Nards a solution beyond a single sketch of the

situation.

Reasoning or argument pwsented. 14% of Japanese students presented a correct

answer with mathematical reasoning (p. 8). The corresponding result for U.S. students would be

0%. Of the 247 students, none produced an algebraic equation to represent the problem. One

student wrote x2 + y2 S ((x+y) / 2)2 but did not connect it to anything in the drawing (which is just

as well since it is not true).

For U.S. algebra II students, about 42% presented reasoning or an argument leading to a

correct answer. In every case the reasoning was inductive. The most common approach was to

particularize the length AB and to calculate a sequence of areas, usually accompanied by a sequence

of drawings. For Japanese students using "inappropriate reasoning," 26% calculated areas and

21% reasoned by drawing pictures.

Correct answer. The problem asks students where to locate P to minimize the two

areas. In retrospect, if we wanted explanation and justification, we should have asked for it.

About 78% of algebra II students produced a correct answer (i.e., "at the midpoint of AB" or

something equivalent). Many drew a single figure and wrote an answer. 84% of Japanese

students had a correct answer, of which 70% used "inappropriate" reasoning.

"I do not understand." This category came about when developing the scoring

scheme with the one algebra class. It occurred only 10 times out of 247, and 9 of these 10 were in

one center. One student wrote a correct answer and the comment, "This problem is a perfect

example of how I know the answer but have no idea how to go about getting it." One suspects the
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student is not unique in this respect among the 247 algebra II students in the study.

Results for parts 2 and 3 of the problem, which ask students to make up their own

problems, select the one liked best and to give the reason(s) will be included in a draft of the final

report.

Note: Reports of analyses of U.S. data for each of the five problems used in the U.S.-Japan

research, reported herein, were formulated from the drafts of the reports by Becker, Silver,

Kantowski, Travers, and Wilson.

The research reported here is funded by the National Science Foundation, Grant Numbers INT-

8715950 and MDR-8850546. Opinions, findings, and conclusions or recommendations expressed

here are those of the author and do not necessarily reflect the views of the National Science

Foundation.
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APPENDIX A

Marble Arrangement Problem

Some Possible Ways of Thinking About the Problem

[Nagasaki and Yoshikawa, 19U9]

(a) Simple Counting

Vertically

(b) Counting and adding

(1)

Diagonally

1+3+5+7+5+3+1 25
(1+3+5) x 2 +7 IC 25

(2)

Drawing lines

(0) Grouping

(1) Making groups of marbles of the same number and adding:

(1)

(2) Grouping into subgroups

(1)

4 x 4 . 16, 3 x 3 . 9
16 + 9 . 25

(4)

9 + 7 + 9 . 25

(2)

(2)

1 x 2 . 2
2 x 2 s. 4
3 x 2 - 6
2 x 2 . 4
1 x 2 . 2

2 + 4 + 6 + 4 + 2 + 7 . 25

(5)

16 + 9 at 25

66 S6

(2)

(3)

4 x 4 + 3 x 3 .. 25

(3)

(3)

(3)

12 +8+4+1 .25

(6)

3 + 4 . 12
12 + 7 + 6 . 25



(d) Moving marbles

4-1 .

....4c.
5 x 5 = 25

(e) Supplementing

6

(f)

9

7 x 4 = 28
28 3 = 25

Explaining using algebraic expressions

1 .

2 .

3.
4.
5.
6.
7.
8.
9.

10.
11.

12 x 2 + 1 = 25
4 x 4 = 16, 3 x 3 = 9, 16
4 + 3 + 4 + 3 + 4 + 3 + 4
7 + 7 + 7 + 4 = 25
7 x 2 - 14, 14 + 11 = 25
3 x 7 = 21, 21 + 4 = 25
9 x 2 = 18, 18 + 7 = 25
5 x 5 = 25
4 x 7 = 28, 28 3 = 25
16 x2 7=25
3 x 4 = 12, 12 + 7 + 6 =

+ 9 =
= 25

25

25
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a) 1

C)

e )

9)

3 7

APPENDIX B

Matchsticks Problem

Some Possible Ways of Thinking About the Problem
[Hashimoto, 1986]

10 13 16

4 6 9 12 15

2 5 8 11 14

2 4 2 4

4 x 3 + 2 x 2 - 16

a

0

0 0

0

5 x 2 + 6 - 16

0

0
NI P

0

5 x 3 + 1 - 16

b)

f

4 matches/square and 5 squares
5 x 4 - 20 WRONG!

4 x 4 - 16

4 + 3 x 4 - 16

h) other ways?
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APPENDIX C

Marble Pattern Problem

Some Possible Ways of Thinking About the Problem

a) Make a picture of the marbles in the fourth

place and COUNT.

b) See a pattern, like:
1st 2nd 3rd 4th,

10 14 18 22

c) 4 7 n

5 6 n+1

6 or 5 or n+2

+7 +4 + n+3

2 2 2 2 4n+6

d) 10, 10 + (1 x 4), 10 + (2 x 4), 10 + (3 x 4)

e) 6 + (1 x 4), 6 + (2 x 4), 6 + (3 x 4), 6 + (4 x 4)
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APPENDIX D

Arlthmogons Problem

Some Possible Ways of Thinking About the Problem

Problem I; Unique Solution

( 1 ) Random Trial and Error

Here subjects might guess a number for the top 0 and, by subtraction and moving

counterclockwise, see if they would end up with the same number in the top 0

Alternately, subjects might (a) work clockwise or (b) work both clockwise and

counterclockwise starting with a guess in the top (, to see if they end up in both

directions with 21 at the bottom.

( 2 ) Systematic Trial and Error

Here subjects might reason that the numbers in the top 0 and lower left 0 must add

to 63. After pvlking a pair adding to 63, work around counterclockwise or clockwise,

using subtraction, to see if they end up with the same number in the top 0 . If not, pick

a different pair and proceed similarly.

( 3 ) One Equation in One Unknown

Let x represent the number in the top 0 Then the lower left 0 is 63 x and the

lower right 0 is 38 x. The two must add to 21; so

(63 x) + (38 x) 2. 21
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( 4 ) System of Two Equations in Two Unknowns

Here subjects might let x represent the number in the top 0 and y the number In the

lower right 0. Then x + y = 38 and 63 x = 21 y; so

x + y = 38

x y = 42

( 5 ) Three Equations in Three Unknowns

Here subjects might let x represent the number in the top 0 , y the number in the

lower right 0 , and z the number in the lower left 0 ; so

x + y = 38

x + z = 63

y + z = 21

( 6 ) By Adding 63, 38, 21 (Seeing a structure)

( 7 )

63 + 38 + 21 =122

122 + 2 = 61

61 63 = 2
or

61 38 = 23

or

61 21 = 40

Difference of the two smallest 0 's (Seeing a structure)

a Find the difference of the numbers in the two smallest 0 's.

b. Subtract the difference from the number in the largest 0 .

c. Divide the second difference by 2, which is one of the numbers in the 0 's.

d. Add this number to the first difference to get the number for the next 0 .

e. Determine the number for the third 0 .
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( 8 ) General Solution (Changing perspective and solving a "bigger problem first)

Let x represent the number in the top 0 and let the numbers in the 0 's be

represented by a, b, and c. Then, work counterclockwise.

problem II:

then, x = b-c+ a- x.
a +b - g 63 + 38 - 21so, x . = = 40 .2 2

so, 40, 23, and -2 are the solution.

0.11212011:111121111.a011111211

18

It was anticipated that students would exhibit one or more of the following approaches to

solving the problem.

( 1 ) Trial and Error

Let the top left 0 be 5 (or any integer). Then the lower left 0 is 18; then the lower

right 0 is 34; then the upper right 0 is 13; and 5 + 13 - 18.

Note: Will subjects recognize that starting with any number in any 0 will lead to a

solution, and that there is more than one (infinitely) many solutions?
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( 2 ) Four Equations In Four Unknowns

Let x, y, z, w represent the numbers in the four 0 's. Then

x + y - 23

y + z - 52

z + w - 47

x + w - 18

( 3 ) Two Equations in Two Unknowns

Let x represent the number in the upper left 0 and y the number in the lower right

0.
Then, 18 - x . 47 - y

23 - x . 52 - y

So, x - y . -29

x y . -29

Therefore, there are infinitely many solutions.

( 4 ), Addition of Pairs of Numbers in Opposite 0 's.

Will subjects see that 23 + 47 - 52 + 18 and, therefore, there are infinitely many

solutions, or reason as follows?

So, x-b-c+d-a+x

So, a + c is b + d (condition for a solution to exist)
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APPENDIX E

Area of Squares Problem

Some Possible Ways of Thinking About the Problem

[Wilson, 1991]

The problem asks for the minimum of the sum of two squares as shown

below. If the sides of the squares are extended in our sketch to form a square of

length AB on each side, four regions are formed: the squares AP2 and PB2 , and

the two rectangles each AP by PB . Now the total of the four regions is always

AB2 . Therefore the minimum sum of the squares AP2 PB2 occurs when the two

rectangles have maximum area. But a rectangle has maximum area when it is a

square or when AP = PB .

Variations on that approach include the following. Let AB x and PB y .

Then we want to minimize x2 + y2 . By the Arithmetic Mean-Geometric Mean

inequality,

x2 + y2 2xy , with equality iff x
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Therefore the sum of the two squares is always greater than the combined areas

of the two rectangles except when x = y . So the minimum area occurs when P is

the midpoint.

Another approach is to formulate the area as a function of a single variable.

Let AP = x and PB = AB x . Then the area f(x) = x2 + (AB x)2 . This simplifies

to f(x) = 2x2 - 2(AB)x + AB2 . This might be recognized as a parabola with the

following graph.

where the vertex is at (AB/2, AB/2) .

On the other hand f(x) = 2x(AB x) + AB2 . By the Arithmetic Mean-

Geometric Mean Inequality,

<-2[x + AB xi2 AB2, with equality if x = AB x
2

= AB2/2 + AB2

AB2/2

For the rare algebra II student that has had just enough cookbook calculus to

take f(x) = 2x2 2(AB)x + AB2, find its derivative f(x) = 4x 2(AB) , and set equal

to 0 , the result is that he can conclude the function reaches a minimum when x

AB/2 without having to think about it.
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Another approach is to particularize the length AB and compute a sequence

of values for AP2 + PB2 as P is placed along points on the line. Let AB - 10 and
x = AP . Then the following table can be generated quickly.

x 0 1 2 3 4 5 6 7 8 9 10

10 - x 10 9 8 7 6 5 4 3 2 1 0

sum 100 82 68 58 52 50 52 58 68 82 100

This provides good intuition that the desired location for P is at the midpoint of

AB .

A variation is to draw a sequence of figures such as the following
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Discussion

Sawada:

of Professor Becker's Paper:

Now we will begin the discussion of Professor Becker's paper. Are there questions

or comments?

Hashimoto: I have a question for Professor Becker and Professor Fujii. What have you learned

from this research, from the viewpoint of the counterpart country, and how are you

going to implement it?

Becker: Should I respond first? Okay. As further background, to begin my response, when

the U.S. group went to Japan before the data gathering began, the Japanese very

graciously hosted us and made arrangements for our group of five researchers to

make numerous visits to schools and mathematics classrooms and observe many

problem solving lessons being taught by teachers. A common characteristic of nearly

all lessons was the structure of the lesson. Of course, the problem had already been

carefully researched; that is, it had been tried out in classrooms by teachers, so

teachers had a good idea of how well the problem would work in terms of

accomplishing the objective(s) the teacher had in mind. The lessons were structured

as follows: the presentation of the problem took approximately 3-5 minutes, with a

couple more minutes for making sure that students understood the problem and what

they were expected to do; then in the next 20-25 minutes one of two things would

happen: either the stddents worked individually on the problem in a whole-class

setting, or individually for a few minutes and then formed small groups (and there are

typically about 40 students in a ;apane,se classroom), or else they were divided up

into small groups of 4 or 5 students to begin with to work on the solution to the

problem; then the teacher had the students write their different solutions to the

problems on the blackboard for everyone to see; then there was a comparing and

discussing of the results; then there was a teacher summary of the lesson, and

following that there might be a request by the teacher for students to write down what

they learned in the lesson. Now, what does that have to do with Professor

Hashimoto's question? At Southern Illinois University, in our NSF Teacher

Enhancement project with middle school teachers, starting in the summer of 1990, we

are implementing that structure of problem solving lessons. The vast majority of our

teachers thought they were not capable of teaching that way. Classroom management

is exceedingly important and, of course, the teacher has to understand the problem,

the different approaches that the students may come up with, and an ability to discuss
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the mathematical quality of students' responses. But the teachers learn that after two
or three lessons using the problem, they know what to anticipate to a very large extent

and understand the mathematical significance in students' responses. The thirty
teachers who are with us for four weeks of intensive work then implement this

problem solving work, with some other work in the project, in their classrooms.

They had to develop a plan for implementing this according to the reality of their

classroom and their school. To a very large extent the teachers used the problems that

we used in the summer institute and they used them according to the way we

modelled teaching both with the teachers and grades 6-8 students in the summer.

They learned that they could do it and they think that it's a very good approach.

Another major activity in the summer was asking each teacher to write a lesson plan;

that is, to select a problem and to develop a detailed lesson plan. Teachers resisted

this. Many commented they had never written a lesson plan and asked why now?

But all of them did it and, by and large, they developed very good lesson plans and at

the end we had thirty lesson plans which we duplicated and all the teachers had a set

of thirty problems with complete lesson plans written up that they could implement in

their classrooms. All these lessons began with an "open-ended" problem, following

the research done by Japanese Mathematics educators which was reported in our

earlier seminar. That's one of the ways in which I have been influenced by the

research. What I have described was part of the SfUC project proposal that went to

the National Science Foundation and was reviewed very positively by the iv, ors,

with pretty supportive and constructive reactions. There are other things I could say,

maybe just two other brief comments. One, we were very honored and very fortunate

to have Professor Hashimoto work with us in our institute at Southern Illinois

University earlier this summer. He taught the open-ended problem solving seminar to

the first-year group. This was their second summer on campus. When he arrived

here for the Seminar, he handed me the evaluations of the students in his seminar

which were uniformly positive. Of course, they liked him as a teacher, and they also

commented on something that I think is very important, namely, that he treated the

problems mathematically in some depth. And the teachers were not used to that. I

think maybe it's another aspect of the lesson to be learned from this research. Then,

one other comment We have a fairly extensive evaluation of this program at our

university. We are looking at pre and post changes in attitudes towards mathematics,

problem solving and use of technology, teachers' beliefs about mathematics,

cognitive problem solving abilities, and assessing changes that are actually taking

place in the classroom, using a comparison group. In general, from pre to post in the

78

q8



summer institute, there were significantly improved attitudes towards mathematics

and problem solving, significantly improved performance with respect to knowledge,

skills, and ability to solve problems, and significant differences from pre to post on

teachers' beliefs about mathematics. The teachers' beliefs measure that we are using

was a measure developed in this U.S.-Japan collaboration. Jim Wilson was in Japan

about a year and a half ago and he worked with Professors Miwa, Fujii, Sugiyama

and Sawada and others in developing this measure. We've used it now in the second

year with very high measures ofreliability for the different scales.

Of course, there were other things learned from thedifferent components of the

research. For example, we learned that, at the various grade levels, Japanese students

have more technical knowledge of mathematics, a greater "fluency" in solving

problems (i.e., can think about the problems in several or many ways, in contrast to

U.S. students), express their ideas in mathematical notation more easily, and use trial

and error less frequently than their U.S. counterparts. There are other interesting

findings which should be further studied, for example, with respect to "liking math,"

"finding it easy," and so forth which are included in Professors Miwa and Fujii's

paper. But let me stop here.

Sawada: Thank you. Any other comments?

Miwa: I would like to give a personal opinion about someof the findings. Professor -11 cker

has given his personal opinion about what he thought of (1) Japanese students doing

very well, in general, and that he believes this is a result of the guidance of the

Japanese education in mathematics. However,I want to comment on another aspect.

This has to do with (2) the aspect of students making up their own problems.

Professor Fujii didn't see much creativity among Japanese students, whereas many of

the problems made by the American students were oneshe never expected, and so he

feels that the American students had more freedom or creativity as far as math is

concerned. Further, (3) attitudes toward mathematics. While it has been mentioned

many times that the Japanese students do well in math, most of them say they don't

like mathematics and don't think they're doing well, whereas the American students

even though they do poorly, they still like math. This is also a point that Japanese

education has to do something about.

Sawada: I think that is a very good point. Another question?



Miwa: Professor Fujii has a further comment.

Fujii: Here are some statistics about Japanese student performance. The first graph shows

that, in the fourth grade, many students say they like math, but by the eleventh grade

it goes down; whereas, in the fourth grade not very many students dislike math, but

as the grade goes up they tend to dislike math more. The second diagram shows

information about student thinking about doing well in math or not and their

confidence. As the grade level goes up, it seems like they lose confidence and this is

the biggest problem Japanese students have. This is something we have to deal with.

They are doing well now, but it is not clear that they will keep doing well in the

future. This is the big problem in Japanese mathematics education.

Sawada: Any other comment?

Fey: Is the situation any different from other subjects in the Japanese curriculum; is this a

pattern that is true for Japanese language, social studies, science, and so forth? Is it

different for mathematics from other subjects?

Sawada: Well, this tendency of more dislike is also true for Japanese language, math (of

course), science, and social studies as well. The reason is that as the students go up

in the grades, the content of the subject area get harder and so students think mai they

cannot really do well.

Uetake: Well, the new curriculum has been recently released. It addresses the value and

beauty of mathematics and that this should be recognized and teachers have to work

on how the student can learn to appreciate that.

Dugda le: On the first marble problem (fourth grade), the predominance of verbal expressions

among the U.S. students and mathematical expressions used by Japanese students

has been mentioned. I am puzzled by that. I wonder what speculation has been made

about what in the curriculum accounts for this difference.

Becker: The reaction I have is that I simply have not found many U.S. teachers that emphasize

to students the importance of representing their thinking mathematically when solving

a problem; so, for example, in the marble arrangement problem, students commonly

simply write a sentence or phrase or make a drawing that represents how they thought
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about the problem. Teachers just didn't seem to know the importance of expressing

thinking in mathematical notation, and emphasizing this. I think its maybe a little bit

more common, but not common enough, to have students actually write down how

they solved the problem or represent in writing their thinking about a problem. And

that's something that the teachers I work with at all levels feel that they should spend

more time on and that, in fact, it's important that kids are able to qualitatively examine

and evaluate their own thinking and to express it using mathematical notation or

expression.

Sakitani: For problems that require a solution using mathematical expressions, not verbal; in the

U.S., do you ever ask such questions, to answer using verbal or mathematical

expressions?

Becker: I'm not sure how to characterize the role of verbalization. Maybe some members of

the U.S. group might want to comment on that.

Dernana: I'll take a crack at it. We've done a lot of work at Ohio State University (and Jim Fey

at Maryland) with trying to get students to think about writing an expression or an

(equation?), writing the math phrase given by keying a calculator and this is not an

easy task and not at all reflected in the curriculum anywhere. Our curriculum is very

answer-oriented and all the multiple-choice tests emphasize that too. We're ve )

dominated by it. We also try to get kids to verbalize in an attempt to write math

expressions and that is another hard thing because of thispreponderance of answering

by picking one of the multiple-choice responses.

Fujii: In Japanese classes as a daily and routine activity, after students give a correct

answer, they then compare the ways of solving the problem and use mathematical

expressions. Therefore, this is just a routine matter to most Japanese students. As a

result, it can confuse the research results.

Nohda: Through this U.S.-Japan collaborative research, the Japanese have found out more

about math education in the U.S. about the relationship between students and

teachers. This has great merit for us. As John Dewey says, in education experience

accumulates and, for the development and improvement of mathematics teaching, this

is what is important in our collaboration. Certainly Japanese math teachers study their

teaching materials very well and then they teach math to the students very effectively;
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but, for the emotional side, whether students like the subject or not, this is neglected.

For the Japanese side, we need to learn what is real education, not just teaching math;

whereas from American side you can probably learn more about how to teach math.

In this way, we can both benefit from this collaborative research work.

Sawada: Thank you, Professor Nohda, for your comment. And thanks to all of you for your

many questions. But, I'm sorry our time is gone, and I have to stop now.

End of Discussion
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AN OVERVIEW OF COMPUTER USE FOR MATHEMATICAL
PROBLEM SOLVING IN JAPANESE SCHOOLS

Tatsuro Miwa

Institute for Applied Optics

Tokyo, Japan

1. Introduction

In March, 1989, the Japanese Ministry of Education released the revised Course of Study,

which emphasized to foster students to cope with big changes assumed in the 21st century, and it

will be put into force in 1992 for elementary, in 1993 for lower secondary and in 1994 for upper

secondary schools, respectively. Among features in the new Course of Study, introduction of

computers into school education is distinguished. Recently the Ministry of Education and local

governments are eager in equipping computers in schools in order to prepare for implementing the

new Course of Study, and computer use is expected to become very popular in Japanese schools in

a few years. Today we are in the midst of transition.

In this paper, the author would like to review briefly recent trends and the present state of

computer use in Japanese school education in general, and in mathematics education in particular,

and examine computer use for mathematical problem solving. The paper consists of three sections

except for the Introduction: section 2 will present recent trends in computer use in school education

in Japan and it will give general background for Japanese situation. In section 3, the focus is

mainly on computer use in mathematics education and we will present computer use in mathematics

in general and those in the revised Course of Study in particular. The Course of Study is a

standard for the national curriculum set by the Ministry of Education. Then we will examine

computer use in teaching and learning mathematics and present examples in lower secondary

school mathematics. In section 4, we will concentrate oncomputer use for mathematical problem

solving, especially on its process and its teaching in Japanese classrooms.

This paper will be focused on general education, but not on vocational education.

2. Recent Trends of Computer Use in School Education

In Japan, computer use in education, except for a few pioneers, was not popular in almost

all schools until the first half of the 1980s, despite the fact that our country was famous as a 'high

technology' country, especially in the field of electronics.

In the middle of the 1980s new tendencies emerged. We can see them in the reports of the
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National Council on Educational Reform, Government of Japan, and those of the Committee of

Experts on School Education to Cope with the Information Society, the Ministry of Education.

Based upon these reports and others, the Curriculum Council of the Ministry of Education had

made a final report for the revision of the Course of Study. In these reports, school education to

cope with the new information age, in which the computer is assumed to play central role, is

emphasized.

In this section we will present an outline of the reports of the above councils and

committees and computer use given in the revised Course of Study. Finally we will look at

preparation for implementation of the new Course of Study in schools.

(1) School education to cope with new information age

The National Council on Educational Reform mentioned the following three principles for

education to cope with the information age in the second report which was released in August,

1986 (The National Council on Educational Reform, 1986):

a) We should work seriously to develop education compatible with the dissemination of

information media in society.

b) The potential of information media should be utilized to invigorate and stimulate educational

institutions.

c) The potential danger of the dark side of the spread of information media should be compensated

for with education, while the bright side should be utilized for harmonizing the educational

environment.

In addition, the Council mentioned in the report, "We should promote the utilization of

information media in learning activities in elementary and secondary education and thus foster

learners' ability to use information, i.e., 'information literacy'," , and emphasized that schools and

various other educational institutions should deal with the development of information literacy in

accordance with each learner's stage of development. By information literacy the Council means

basic competency of individuals to select and use information and information media

independently. These principles and emphasis of information literacy is surely fundamental in the

education for the new information age.

Prior to the above report, the Committee of Experts on School Education to Cope with

Information Society, the Ministry of Education, explained the following on computer use in school

education in its summary report of discussion released in August, 1985 (The Committee of Experts

on School Education to Cope with Information Society, 1985):

a) Computers should be introduced primarily so as to contribute to attainment of essential aims and
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objectives of school education. Originally schooleducation is expected to help students acquire the

fundamentals and to develop their intelligence, virtue and body harmoniously through human

interaction between teachers and students and between students, and learning by experience and

through real things are stressed. Use of computers should not be contradictory to the aims of

school education but help to realize them, that is, use of computers should help students to

understand fundamental concepts and to foster thinking ability and creativity as well as assist

teachers' teaching function.

b) To foster the aptitude needed in a new information age should be emphasized. In a new

information age, the new aptitude, which is not necessarily the same as in these days, will be

needed, e.g., to understand computers, to use them correctly, and to express one's thought in a

form different from the traditional one. In school education, the fundamentals for fostering this

aptitude is required and basic faculty leading to future application and creation must be stressed.

c) Introduction of computers should be done in accordance with development of students.

Therefore, objectives and methods will vary from elementary school to upper secondary school or

university, e.g., in elementary school, stressed is to get students to become familiar with

computers, and in lower secondary school, stressed is to use computers in teaching and learning of

academic subjects as well as to teach basics of computers, allowing options in accordance with

students' ability and interests.

d) To activate school education by introducing computers should be implemented and for this it is

important to arrange the surrounding environment including development of excellent software and

teacher education.

The Curriculum Council of the Ministry of Education released its final report in December,

1987. In the report, as one of the basic philosophies for the revision of the Course of Study the

Council suggested, "To emphasize fostering students' will to learn spontaneously and ability to

cope with the change of society actively" and stressed logical thinking ability, imagination and

intuition as well as information literacy; i.e., competency to understand, to select, to process, and

to create information and ability and attitude to use information media such as computers. In

addition, the Council mentioned that the influences brought by the new information age should be

taken into consideration in the Course of Study. (The Curriculum Council, 1987)

(2) Computer use in the revised Course of Study

In the revised Course of Study, based upon the firm' report of Curriculum Council, the

term 'information literacy' is not used explicitly but what is i:sumed in it are to be dealt with in

various school subjects.

To foster competency to judge, select, organize and process information and ability to
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create and communicate information is emphasized in Japanese language, social studies,

mathematics and science, to be aware of the influence of computers in society is to be dealt with in

social studies, health and physical education, industrial art and homemaking and moral education,

to understand the basics of computers and to operate computers in mathematics, industrial arts and

homemaking and to utilize information media, such as computers, skillfully in teaching and

learning in all subjects, especially in mathematics, science, industrial arts and homemaking and fine

arts. In particular, in lower secondary school the subjects of industrial arts and homemaking, a

topic 'basics for information' is to be dealt with, and its contents are to understand basic

construction and functions of computers, to do fundamental operations on computers, to make up
simple programs, and to make use of information with appropriate software.

(3) Preparation for computer use in schools

In order to put the revised Course of Study into practice in schools all over the country, it is

needed that all schools have facilities of computers, including suitable software and preparation of

teachers to be capable of teaching and operating computers. The following are statistics by the

Ministry of Education in the end of March, 1989:

Table 1 The Number of schools equipped with computers

number of number of Percentage Mean number. Mean number
schools (A) schools having (B/A) of computers of software

computers (B) in a school in a school

Elementary 24,658 5,172 21.0% 3.0 19.6

Lower Sec. 10,585 4,740 44.8 4.3 27.5

Upper Sec. 4,189 4,035 96.3 25.5 78.5

Table 2 The number of teachers who can operate or teach computers

# of teachers # of teachers # of teachers Percentage
(A) able to operate(B) able to teach(C) (13/A) (C/A)

Elementary 426,418 32,612 6,496 7.6% 1.5%

Lower Sec. 268,361 38,898 10,051 14.5 3.7
Upper Sec. 204,661 61,774 27,342 30.2 13.4

(Note. The above statistics include data of vocational courses in upper secondary schools, where
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computer use was popular from the beginning of the 1980s.)

Viewing these tables, equipment of computer in elementary and lower secondary schools is

very limited and insufficient, especially in elementary schools, and teachers able to teach computers

are rare. The latter is extremely serious, From 1989, much effort has been done but more effort

not only of financial aspects but of teacher education is needed in order to improve the situation in

our country. For instance, concerning teacher education, various short courses have been and are

undertaken by the Ministry of Education, local boards of education in prefectures and cities,

academic societies, e.g. Japan Society ofMathematical Education and other institutions and

companies. In addition, in pre-service teacher education new requirement was established, which

includes the training in computer use.

3. Computer Use in Mathematics Education

We will focus on computer use in school mathematics education. No doubt, the computer

has peerless power in mathematics education. First we will cast a glance on computers in

mathematics education. It will play a role of introduction in this section. Then we will look at

computer use in the revised Course of Study. These are not in act today but it will be implemented

in the near future. Next, we will focus on computer use in school mathematics classes, and

present examples in the lower secondary school in order to be more in details and concrete.

(1) Computer in mathematics education

When we look at computer, we are surprised at its peerless power. In fact, the computer

has capability of fast and precise numerical computation, fast and precise symbolic-expression

manipulation and fast and precise processing and analysis of a lot of statistical data and fast and

precise drawing of function graphs and geometric figures of two and three dimensions. Someone

might assume the computer to be a panacea for resolution of difficult-ties in mathematics education.

Needless to say, it is not true. Pointed out is that no advantage is brought about automatically only

by existence of the computer and that any difficulty on teaching mathematics cannot be solved by

only setting computers in the classroom. That is, it is man but not the computer that resolves

difficulties. The computer is not the subject but a powerful means. (Howson et al. 1986)

In mathematics, the computer is very powerful at inquiry and discovery; for instance, use

of computer graphics, which enables visualization of various phenomena and of plane and spatial

figures and their motion, displacement and transforination, facilitates to make conjectures

intuitively. Further, the first step of the inductive paradigm "computation-- conjecture-- proof' will

be applicable in possible cases, not only in geometry but also in arithmetic, algebra and calculus.

This illustrates that in mathematics classes, the computer promotes students' mathematical activities
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to inquire into and discover mathematics, which is very important in mathematics education. Thus,

computer use allows students to be active at given mathematical phenomena and gets them to study

various topics and concepts and to behave making better use of mathematical ideas autonomously

and independently. Depicting a phenomenon which is difficult to represent computer use enables

students to widen their field of vision and enrich their understanding, and motivates students to

practice discovery process.

Briefly speaking, computer use allows experimental aspect of mathematics in class.

Mathematics is said to be different from natural science, but in inquiry and discovery facets

mathematics and natural science have commonality, and experiment is an essential element.

However, mathematics has a facet of demonstration or proof. It is crucial to balance experimental

mathematics and formal mathematics. (Howson et al. 1986)

(2) Computer use in mathematics of the revised Course of Study

We will return to computer use in mathematics of the revised Course of Study which was

released in March, 1989. (Ministry of Education, 1989)

In elementary school, no content related to computers is described explicitly, but in 'the

construction of teaching plan and remarks concerning content' suggested is "At the fifth grade or

later, the teacher should help children to adequately use the 'soroban' (Japanese abacus) or hand-

held calculators, for the purpose of lightening their burden to compute and of improving the

effectiveness of teaching."

In lower secondary school, representing procedures of computation, etc. using flow chart,

binary system and expression of number in the form of ax1On are content in the eighth grade, these

are related to the basics of computers. In 'the construction of teaching plan and remarks

concerning content', suggested are "In the teaching of each domain, computers should be

efficiently utilized as an occasion demands. This matter needs to be considered in the instruction

by the experiment and observation, etc. ", and "In the teaching of numerical computation, the

teacher should give consideration to improve the effectiveness of learning by having students use

the 'soroban', or hand-held calculators etc. as an occasion demands."

In upper secondary school, mathematics is composed of six subjects, Mathematics I,

Mathematics II, Mathematics III, Mathematics A, Mathematics B and Mathematics C. Among

them, Mathematics I is required for all students but the others are optional. In Mathematics A, one

of its topics is 'computation and computer' and operation of computer, flow chart and

programming and calculation using computers are to be dealt with. In Mathematics B, one of its

topics is 'algorithm and computer' and function of computer, program of various algorithms, e.g.

Euclidian algorithm and calculation of root by iteration are to be dealt with. In Mathematics C,

through using computers from the viewpoint of applied mathematical science, matrix and linear
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computation, various curves, numerical computation or statistics are to be dealt with. In 'the

construction of teaching plan and remarks concerning content' of all six subjects, suggested are

"The teacher should make active use of educational media such as computers, so as to improve the

effectiveness of learning.", and "In the teaching of computation, the teacher should have students

use hand-held calculators and computers as an occasion demands, so as to improve the

effectiveness of learning." More details are given in Fujita et al., 1990.

We see that in the elementary school, computer useis not given explicitly but the hand-held

calculator is to be used for improving effectiveness of teaching and learning, and in lower

secondary school a few topics related to computer are given and computer use aims mainly at

improving effectiveness of teaching and learning. In upper secondary school, we see that

computer use in mathematics is done aiming at to understand computer and to operate it in simple

cases in optional subjects as well as to improve effectiveness of teaching and learning in all

mathematics subjects.

(3) Computer use in teaching and learning of mathematics

Concerning computer use in mathematics education, pointed out is that there are the

following three forms (The Committee of Experts on School Education to Cope with Information

Society, 1985):

A. Using computer for improving effectiveness of teaching and learning.

B. Teaching of computer literacy.

C. Using computer for making up instructional plans and materials.

Among these three we will focus on the A in the following, as it is explicitly suggested in

the revised Course of Study.
Rigidly speaking, computer use in teaching and learning be divided into following two

categories:

(i) computer as a means by which teachers teach mathematics effectively.

(ii) computer as a means by which students study mathematics spontaneously. Actually, in

mathematics classes, however, these two are inseparable as a whole and we do not distinguish

between them in the following.

Computer use in teaching and learning should be devised so as to foster students' thinking

ability and to get students to positively act on computers with a critical mind as well as to let them

answer the questions posed by computers. To use computers in teaching and learning of
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mathematics aims mainly to help students do mathematics more and better. Computer use

facilitates to enrich mathematical experiences, which is crucial in introduction of abstract

mathematical concepts, and provides opportunities in exploratory and discovery thinking. (Fujita

et al., 1990)

It is important to utilize functions of the computer, such as simulation, graphics,

information retrieval and processing in instruction, and to connect computer use to real experiences

of students, such as observation, experiment and practices. Lessons involving these activities are

expected to have flexibility in implementation of classroom practice and to give much more

motivation, to deepen students' interest into lessons, to get students to enjoy thinking and to foster

logical thinking ability, problem solving ability and information processing ability. (Ministry of

Education 1990)

Computer use allows teachers' teaching methods to be more varied and flexible and has

potential to provide effective means for teaching topics in which many students have difficulties

with traditional teaching methods. Moreover, it is expected to facilitate teaching and learning suited

to individual aptitudes of students, so as to enhance individual student's interest at learning, to

foster individual student's ability, to get the student to establish his/her learning style and form

better attitude and to consolidate student's fundamental knowledge and skills. (Ministry of

Education 1990)

The following are examples of computer use in teaching and learning in mathematics

classes:

(a) It presents a dynamic view in various areas of mathematics. For instance, in geometry, to

represent motion and displacement of figures in the plane and in space and their transformation and

configuration vividly is very effective for students to deepen their understanding and enhance

geometric intuition.

(b) It enables to compute complicated computation and let students appreciate the utility of

mathematics. Computer use makes possible to stress approach and results rather than process of

computation in order to make conjectures and to verify them smoothly. Further, with computers,

students can deal with easily problems from real situations which includes often dirty numbers. It

leads students to realize a real utility of mathematics. The hand-held calculator is also effective in

this respect and more available in schools.

(c) It assists students to do problem solving and help them think spontaneously. Computer assists

students by representing on the display overtly and concretely what they have drawn mentally and
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verifying what they have conjectured, and promotes their thinking to develop easily and smoothly.

(d) Using the simulation function of the computer, it is possible to repeat many times experiments

in a short time and without any danger.

While computer use has much expectation, the following attention should be paid: If

computer use extends to unnecessary and inadequate ranges, students would think that computer

can do everything and would reduce the positive attitude of using their own hands and bodies and

seeing nature and society through their own eyes. It leads students to avoid coming in direct

contact with nature, man and society and to reduce a student's intellectual creativity.

For computer use in teaching and learning to be effective, the following remarks are

important

a) As well as taking the nature of mathematics as a school subject into consideration across school

levels, it is needed to be in accordance with students' developmental stages.

b) While the function of the computer should be fully utilized, the computer should be coordinated

with other educational media together in a suitable way.

c) Computer use in education should not replace education by real materials and education through

real experiences, but supplement and reinforce them.

d) To use the computer appropriately in the classroom, it is needed to devise suitable arrangement

of hardware and software and instructional form. In addition, it should be considered not to

increase students' burden.

e) Instruction in class before and after computer use is important. Use of computer without

appropriate instruction is meaningless. For instance, in observation on a computer display needed

is an instruction in advance to make clear what to observe and what to do after observation.

f) It is desirable that students record observation of computer display including pictures, numerical

values and expressions, and discuss based on the record of these observations. More desirable is

for students to be habitual in these actions, because to record makes their observation more precise

and has potential to generate new vision and way of thinking which computer use causes.

(4) Examples of computer use in lower secondary school mathematics

Here we will concentrate on computer use in lower secondary school mathematics and give

several examples. (JSME 1990, Ministry of Education 1991).

(A) When students try to find out properties of geometric figures, i.e., to make conjectures and to

prove them, it is very useful to see and grasp points, lines and circles etc. on geometric figures
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dynamically. Until now, teachers illustrated only typical scenes and left dynamics in geometric

figures to teachers' explanation and students' imagination. Computers can display these dynamics

directly. It helps students deepen their understanding more and enables them grasp geometric

figures dynamically and enhance the power of conjecturing and proving geometric properties of

figures, and promotes students to think geometric figures developmentally and discover new

problems and/or properties by themselves. Examples are discovery of invariant property of

circular angles and integration of the various cases of circular angles.

(B) In teaching spatial figures, it is usual that after explanation using real materials and models, the

teacher proceeds to use of sketches on chalkboards or in textbooks. But it is difficult for students

to transfer from the model to sketches and to make a connection between them. Computer display

of three dimensional figures plays a role of an intermediate medium connecting models to sketch.

Using the computer, students are expected to image three dimensional figures and their operations

easily and to foster rich spatial notions. Examples are construction of spatial figures by movement

of plane figures and cut of spatial figures, e.g., cube, by a plane.

(C) Observing display of computer which pictures various situations and phenomena dynamically,

students can grasp concrete images and notion of function. The computer can draw graphs of

functions immediately when the equations of functions are given. Observation of graphs globally

and locally through zooming in and zooming out enables students to realize important properties of

graphs of functions and the interrelationship of graphs of various functions. Examples are

introduction of the quadratic function defined as an increasing area of triangle in the square and

graphs of inverse proportion and other functions.

(D) Computer can process a lot of statistical data and give various statistical measures and draw

relevant graphs. This enables students to concentrate on statistical analysis saving many hours of

tedious computation and data processing. Example is statistics by real data, such as students

physical exercises, running, jumping and throwing. In probability learning, it is important to

understand the concept of probability as a ratio of events which occurs repeatedly many times

under the same condition. Computer simulation enables this experiment in a few minutes and

contributes to students' building up probability concept. Sample survey is another application of

the simulation function of computer.

We will see use of handheld calculators in secondary mathematics class here. The hand

held calculator is used mainly for lightening students' burden of computation. For instance, in

statistics students need to process and organize a lot of data and compute various ratios, handheld

calculator does this work effectively. It is used when teacher emphasizes to proceed to a further

objective utilizing results of computation, e.g., to evaluate areas and volumes of plane and solid

figures. To calculate squares of approximate decimal fractions in order to determine a square root
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of a number in a given decimal point is another example.

4. Computer Use for Mathematical Problem Solving

Now we will concentrate on computer usefor mathematical problem solving, which is a

main theme in this seminar. First, we will examine the role of computer use in mathematical

problem solving, taking the phases of problem solving which are proposed by Prof. G. Polya into

consideration, and attend to the posing and solving of a problem and their relation to computer use.

Then we will look at the mathematics classroom and its climate in Japanese schools, as computer

use is done in mathematics classroom but not in an isolated environment. It is crucial in computer

use for mathematical problem solving.

(1) Role of computer use in mathematical problem solving

In the mathematical problem solving process, the following four phases are given by Prof.

G. Polya (Polya, 1973):

1. understanding the problem.

2. devising a plan.

3. carrying out the plan.

4. looking back.
These phases are surely reasonable. It is clear that problem solving behaviors do not

necessarily proceed in the order of from 1 to 4. For instance, in the phase of devising a plan a

solver often becomes aware of misunderstanding or shortage of understanding of the problem and

returns to the phase of understanding; in the phase of carrying out the plan a solver often goes back

to the planning and makes up a new plan when he/she notices insufficiency of the first plan. Thus,

we consider the above four phases as appropriate labels of what a person does in theproblem

solving process.
Computer use possibly contributes to each phase of problem solving. As to understanding

the problem, various functions of computer help students understand what is meant by the problem

sentence. For instance, using graphics, the computer draws a picture representing problem

sentence or make diagram expressing vital parts of the problem, which enables students to imagine

what the problem means concretely. Numerical computation can be used to represent concrete

cases of the problem, if necessary. Simulation under the problem condition can give insight ;',to

understanding the problem. Using the computer appropriately, students are expected to understand

what is unknown, what are the data and what is the condition.

As to devising a plan, it is necessary to find a connection between the data and the

unknown. This is difficult for students with little experience and few resources. The computer
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has the possibility to assist these students by presenting not only various strategies for problem

solving but relevant mathematical facts including concepts and formulas. Further, it helps students

by repre-senting on the display overtly and concretely what they have drawn mentally, and

facilitates to try out what they wish to do. These promote students' thinking for devising a plan to

develop easily.

In the phase of carrying out the plan, operations such as numerical computation, operation

of algebraic expressions and construction of figures are needed. For common problems, these are

surely within students' competency, but the computer assists students when this is not the case by

its powerful functions. In some cases, verifying of what they have conjectured may play an

important role. However, whether it is appropriate and possible to leave the computer to check

each step of carrying out and to make clear the correctness of each step or not is left as a question.

In the final phase, looking back, computer use has much value. Looking back involves not

only to check the result, the method and the argument in solution of the problem, but to try to apply

the result and method to similar or other problems, i.e., to generalize the result and method. This

leads to discover new problems and to solve them, which is most expected in computer use in

mathematics education. Thus, computer use has potential to play a great role in mathematical

problem solving.

In mathematical problem solving, we should attend to who poses the problem and what

kind of problems are to be solved. Usually the teacher and/or textbook poses the problem in

mathematics classes. In this case, teacher is a poser of problem and students are solvers, and the

their roles are separated. Very often problems in this case are of closed-ended type, that is, the

problem contains necessary and sufficient conditions to give a unique answer and allows only

varied approaches. For this type of problem, the solution is the only goal for students. However,

there often occurs situations in which it is difficult to determine the problem itself or to make clear

the necessary and sufficient conditions to solve the problem, such as those in the real life. These

lead to problems of so-called open- ended type and mathematical problem solving is not limited to

the fore mentioned closed-ended type. It is important for students to pose a problem, to collect

necessary data, to set an appropriate condition by themselves in a given problematic situation and

to solve it. That is, it is desirable that the student is a problem poser and solver simultaneously. In

addition, as revealed in the phase looking back in the above, after the solution is acquired, students

are expected to generalize the result and method by examining them. Here, they are also assumed

to be problem posers and solvers.

As described already, computer use is powerful in inquiry and discovery in mathematics

and facilitates to make conjectures. Using the computer suitably, students can implement the first

step of the inductive paradigm of computation--conjecture-- proof in all areas of mathematics and
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their applications. Thus, the computer will be expected to help students in posing problems. In

particular, for mathematical modeling of real situations, which contain complicated and complex

data to be processed, the computer is surely indispensable.

(2) Computer use for mathematical problem solving in Japanese classroom

Computer use is done in mathematics classroom but not in an isolated environment. We

will look at the mathematics classroom in Japanese schools, where the classroom climate, which is

not necessarily the same as in the US, is thought to be crucial.

First, we will see the climate of Japanese mathematics classroom, which is made clear by

the US-Japan collaborative research on mathematical problem solving. Prof. J. P. Becker

elucidated typical organization of Japanese mathematical solving lesson and pointed out that it

consists of the following six parts. Greetings at the beginning and the end are left out:(ICTM

1988)
1. review previous day's problems or introduce problem solving topic.

2. understanding the problem.

3. problem solving by students, working in pairs or small groups.

4. comparing and discussing (students putproposed solutions on the chalkboard).

5. summing up by teacher.

6. exercise, 2-4 problems.

Japanese teachers have a tendency that whole class instruction is central and group lesson

and individualized lesson are auxiliary and supplementary to the whole class lesson. In the above

organization, 1, 2, 4 and 5 are usually done in whole class under teacher direction with question-

and-answer between teacher and students. In this lesson organization, the emphasized part is 4.

comparison and discussion and many minutes in the lesson are devoted to this part. Cooperation,

organization and orderliness are emphasized in a classroom and elaboration of solution by

discussion and negotiation in the classroom are most stressed. Not only the answer, but the way

of thinking to find the answer including strategies and approaches are discussed in order to

generalize the solution of the problem of the day to awider context. More stressed is the process

by which a problem is worked out rather than the answer itself. It is a reflection in the sense of

Prof. J. W. Stigler. (Stigler et al., 1888, Miwa, 1991)

Computer use will be subject to the climate of Japanese mathematics classrooms, that is,

the computer is to be used mainly in whole class lessons; in particular, when the number of

computers is very limited. It shows a tendency that often computer use be confined to whole class

presentation of the problem situation in the introduction and the stage of understanding the

problem. For instance, drawing a picture or making a diagram representing what problem sentence

means is common computer use today. Following this computer display, the teacher expects
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questions and answers between teacher and students and between students and whole class

discussion, if necessary. It should be noticed that the above drawing or representing realize a high

degree of flexibility and give dynamic pictures which the computer allows, but not be reduced to a

substitute of a chalkboard. When students are able to use the computer, it is used fully in the stage

of problem solving.

Computer use for mathematical problem solving in classroom should not be confined to the

above but be effective throughout the lesson. For instance, in understanding the problem, difficult

points in the problem vary from student to student, and individualized study will be required. The

computer allows the possibility for individualization. It is also true in problem solving by

students. In the important stage of comparison and discussion of students' proposed solutions,

when LAN of computers in a classroom are available, they can communicate freely what they did

or did not do through the network. For these to be realized in mathematics classes, needed are full

equipment of computers and change of the instruction paradigm and form.
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Discussion

Becker.

Demana:

Miwa:

Choate:

Miwa:

Teague:

Miwa:

of Professor Miwa's paper:

Thank you, Professor Miwa, for that very thoughtful and interesting presentation,

and thank you also for expressing yourself so clearly in English. It was easy for us

to understand. Now we have some time for discussion. Are there any reactions or

questions?

Yes, in your chart Professor Miwa, you mentioned about the computers in the

schools but you didn't say anything about computers in Japanese homes. To what

extent do Japanese homes have computers for their children to work with?

We haven't yet thought a great deal about computer use in homes. But certainly there

are a lot of homes with computers and a lot of commercial software on drill and

practice is available. But our primary concern right now is with school education

and, therefore, attention to computer use at home will come later.

In your talk, you made reference to the number of teachers who can teach computers.

Could you explain what you mean by teach computers?

This involves two things. Number one is how to operate the computer, what the

computer is. Number two is teaching something using a computer. In my talk, I am

thinking in both ways. Especially, in upper secondary schools how to operate the

computer is more important, but at the lower secondary and elementary levels, using

the computer in teaching something receives more attention.

I'm not sure to whom I should address this question, but thinking about the talk by

Professor Miwa and Professor Fujii earlier today and your talk now, I'm curious

what responses students may come up with when you pose those five problems if

they had had a computer terminal in front of them, possibly with a spreadsheet or a

graphics package. How would their responses differ? The next time you do a study

like this, is that something that you will consider doing?

Well, this is a difficult problem because there are at least two things to consider. One

is that the computer exists and you can use the computer to solve problems. Another

one is when you solve the problem you may be able to use the computer, but without

even knowing about computer use, a student should be able to solve the problem. So
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there are these two considerations and, at this stage, we are not dealing with the first

part yet, so I cannot answer your question further.

Ferrio: The new curriculum places a big emphasis on the use of computers. Could you speak

a little bit about the goals for the number or the ratio of students per computer at the

different grade levels, and how soon you expect to achieve those goals across the

county?

Miwa: As far as the number of computers is concerned, in two or three years we are

expecting to provide three hundred thousand computers to schools throughout Japan,

which figures to an average of 22 to 23 machines per junior and senior high school

class, and for elementary several. When we talk about computer use by students

now, the focus is mainly at the high school level. In our high school (upper

secondary school), there are three math courses, Math A, B, and C. All of them are

electives - students may choose the course they want. Computers may be used in

Math A; but Math A has four main parts, and students are supposed to learn two of

them. Therefore, since the computer represents just one of the four, even if students

take the Math A they may not study computer use. So, right now there is no reliable

estimate of how many students will need computers and, therefore, even if you have

computers for use, it may not be useful.

Zilliox: Will the computers be shared with other subject areas? Or is it just mathematics?

And, what is the anticipated set-up? Will they be in a lab in one room together?

When I think of twenty-five in a school, Fm trying to see how they're going to be

spread out, all in one room or in individual rooms, just some picture of what it might

look like.

Miwa: First of all, the computer is supposed to be shared by all subject areas, not just for

math. If you have a lot of computers then we may have one computer lab with all of

them, but usually there will not be a large number and so the computers may be

moved to the class where they will be used. Also, the number of students in the

elementary and junior high schools is getting less and that means that many schools

may have rooms available, so there is a possibility to get the computers there. That's

the present situation.

Morimoto: Well, especially at the junior high school level, many schools have more than twenty
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computers and, in that case, they are usually kept in one room and use a local area

network system. At the elementary school level, usually the number of computers is

very small and they don't have a local area network system, But right now there are a

lot of opinions among the teachers and some say they shouldbe kept in one place and

some say they should be shared. So, there is no consensus yet.

Sawada: In the 1990 statistical data gathered by the Ministry of Education, one of the questions

asked was where do you usually keep the computer in the school? The number one

response in the elementary andjunior high schools is that they are kept in a property

room. For high school, they are kept either in a special room or in a computer lab. I

will talk about this Wednesday during my presentation.

Becker: One last comment or question. Mr. Morimoto.

Morimoto: Usually when you install computers in the school, there are two stages. The first

installment contains only several computers; in this case, they are usually kept in a

property room. But at the second stage, the second installment, usually a lot more are

purchased and they are kept in a special room or lab.

Becker: As we close this session now, there are several other important questions that I think

Professor Miwa touched on that would be very good for discussion, but we'll have to

discuss these over coffee or maybe at some other time. One is the question, of

course, of teacher education. That's very important. Another question that occurred

to me is the amount of time to prepare for implementing computers as part of the new

syllabus. The new syllabus is completed but there will be some years yet before full

implementation is accomplished. I don't know the details of that. A third thing, an

impression I have is that at least at some of the grade levels there seems to be a rather

careful and deliberate introduction of computer use; for example, Professor Miwa

made reference to the syllabus of specific topics for which the computer would be

used with students. And then, finally, another which, for me, is a very important

characteristic of the use of computers in the classroom is a general theme of the need

for very careful management of the class in using computers. This is another

prominent characteristic of integrating the use of computers into the mathematics

curriculum.
Thank you and as we finish this session, I want to introduce Professor Neil

Pateman who is a mathematics educator on the faculty of the University of Hawaii. It
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will be possible for him to join us from time to time in our deliberations and we

welcome him. Also, last night at the reception I forgot to mention that Professor

Nancy Whitman is on her way. She is coming from the mainland and will join us

tomorrow. So, once again, Professor Miwa, we would like to thank you for an

excellent and very informative presentation.

Miwa: Thank you very much. I am very happy with our discussion.

Becker: Professor Uetake will now Preside for the next session. The coffee break will not

come until after the next talk and discussion. Let's take a couple of minutes to stand

and stretch, and then we'll begin the next presentation. As an aside, Professor

Wilson just pointed out to me a very nice source of information and activities about

arithmogons. I was not aware of it. It's in a book called Bottlecap Mathematics. The

booklet is full of problems with some interesting arithmogon activities, published in

the 1960's by Creative Publications. Professor Wilson has a copy and it sounds

interesting. Now I'il turn the program over to Professor Uetake.

End of Discussion
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CALCULATORS, COMPUTERS, AND ALGEBRA

IN SECONDARY SCHOOL MATHEMATICS

James Fey

University of Maryland

Algebra is the most prominent strand in the secondary school mathematics curriculum of

American schools. Students in college preparatory programs study algebra for at least two full

years. Middle school mathematics programs include considerable work intended as preparation

for algebra, and algebraic concepts and techniques play important roles in the other major strands

of secondary school mathematics, like geometry, trigonometry, and analysis. Recent educational

policy studies have suggested that success in algebra is a critical factor in students' academic

progress beyond secondary school, so there is enormous parental and community pressure to

assure that the mathematics programs of nearly all students include study of algebra.

Despite the prestige and time devoted to algebra in secondary school, it is, by many

measures, a troubled subject. The failure rate in algebra is probably highest of any course in the

high school curriculum, and university mathematics faculties regularly complain about the poor

algebraic skills of their incoming students. Many students fail to master the array ofsymbol

manipulation procedures for transforming algebraic expressions into equivalent form and for

solving algebraic equations and inequalities, the use of algebraic methods to solvepractical and

pluzle problems, and the use of algebraic reasoning to construct mathematical arguments.

Furthermore, the pressure to make algebra a subject learned by all students is greeted by skeptical

teachers who believe that many students are ill-prepared for or simply incapable of learning "real

algebra."
Given these background conditions, it should not be surprising that many mathematics

educators have looked hopefully to calculator and computer technology in search of effective new

tools for algebra instruction. There are, of course, some obvious attractive opportunities.

Computers and calculators can be programmed to execute a vast array of algorithmic procedures

for reading, storing, manipulating, and displaying numerical, graphic, symbolic, and logical

information. Spreadsheets and data bases are powerful tools for constructing and analyzing

patterns in numerical data; graphics programs give visual images of complex quantitative

relationships; symbol manipulation programs perform formal operations that are the core of
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standard algebra courseslike factoring, expanding, simplifying, and solving. Furthermore, the

fact that computers are programmable machines makes them flexible tools for solving new

problems by construction of new algorithms.

Over the past two decades these computer capabilities have been applied to secondary

school algebra in ways that can be sorted into three broad categories:

Computer as Teacher
Many who work in mathematics education see the improvement of teaching as the most

serious problem and the most promising opportunity. When this concern is combined with

interest in technology, the response is quite often some sort of effort to use a computer to perform

teaching operationsto program the machine to execute ideal teaching behavior.

Some of the first algebra software developed for microcomputers was of this sort. Early

electronic flash card programs provided practice problems covering the range of manipulative

operations in a traditional algebra course. While this kind of software has been sharply criticized,

it does offer at least three features that make it very attractive:

Individual students can get problem challenges targeted on their personal learning

needs.

The computer can wait patiently for student responses to problems and then

provide immediate personalized feedback on the student work, in a way that no

single teacher can manage with a large class of very different students.

Many students find interaction with computer software to be free of the anxiety that

often accompanies work in front of another student or the teacher. There is no

embarrassment in making errors "in front of a computer program."

Of course, skillful teachers can do more than assign algebra exercises and mark student

work correct or in error. A perceptive teacher can diagnose student errors and give helpful hints

through constructive dialogue with the student. More recent work in development of algebra

software has tried to create "intelligent tutors" that provide useful diagnosis and remedial guidance

as students work on practice problems. This challenge has been especially attractive to cognitive

psychologists, including Dave McArthur and Matt Lewis at the Rand Corporation and Jill Larkin

and John Anderson at Carnegie-Mellon University. The initial efforts toward intelligent tutors in

algebra focused on ways to train students in the syntactic and procedural rules for writing and

manipulating algebraic expressions. The tutor programs include underlying computer algebra

systems that perform the symbolic manipulations being taught, schematic displays that help

students organize their work on symbolic expressions with devices like expression trees and

reasoning trees, and a variety of kinds of coaching advice available to students at various stages in

their work.
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Outside of the cognitive science community, the intelligent tutor programs aimed at

teaching symbolic manipulation have attracted very little attention and there is only modest

research evidence that the programs are effective. Many mathematics educators have complained

that the symbol manipulation tutors take great pains to teach precisely those aspects of algebra

made obsolete by the machines used for tutoring. In response to such criticisms, the authors of

algebra tutors have recently turned to the moredifficult task of building intelligent programs that

help students in problem solvingespecially in the phase of problem solving where verbally

stated conditions must be translated into suitable symbolic forms.

The Carnegie-Mellon and Rand Corporation research groups have each developed such

word problem tutors. The tutors typically offer students a screen with windows for displaying

data and relationships in symbolic, numerical, graphic, and visual form. They offer a range of

reasonable action choices and give feedback on the advisability or correctness of student

decisions. There is only limited evidence on the effects of such word problem tutors, and most

mathematics educators remain skeptical of the prospects. However, I am persuaded that the

challenge of constructing such tutors provokes very deep analysis of the difficulties in connecting

mathematical structures to the structures ofproblematic situations.

Computer-Based Exploratory Learning
Drill-and-practice and tutoring programs take a fairly direct approach to computer

emulation of algebra teachingthe tasks and student actions are fairly narrowly constrained and

the feedback is usually something like the words a teacher might use. There is, however, another

family of instructional programs for algebra that give the student more freedom to explore

structurally rich problem situationsvery often in a game or contest against the computer or other

students.
One of the first, and still the best, of this kind of instructional software for algebra is the

collection of graphing programs authored by Sharon Dugdale and David Kibbey. Best known

and often imitated is Green Globs, a game in which students are presented with a coordinate grid

and thirteen 'globs' which must be hit by graphs of student-entered equations. The game offers

no direct instruction on equation:. or graphs. The only feedback that students receive is the

computer graph of symbolic function rules entered by the students, the opportunity to replay a

game with new ideas, and the opportunity to study successful efforts by other students. However,

reports of Green Globs in action reveal striking instructional effects as students discover and share

ideas about equations and their graphs.

Graphical Exploration Green Globs is also representative of the most prominent

feature in software for algebra instructionthe use of graphical images to enrich the meaning of

algebraic expressions and operations. There are literally dozens of pieces of algebra software (and
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now handheld graphing calculators) designed to give students a mathematical environment that

supports exploration of the connections between symbolic expressions and graphs. The typical

graphing program allows users to enter rules for one or more functions, choose domain and range

or scales for a viewing window, and then inspect the computer-drawn graphs. An available

pointer can be moved to various points of the screen to read coordinates. Resealing options allow

the user to zoom in on a piece of the graph or zoom out for a more global view. On some pieces

of software the user can easily manipulate the graph or the function rule parameters and observe

the corresponding changes in symbolic and visual representations.

Typical instructional activities that use function graphers give students a family of related

rules to display and directions to search for connections between the symbolic rules and the

graphs. For example, in elementary algebra students might be asked to study linear rules of the

form y = mx + b or quadratics in the forms y = x2, y = ax2, y = ax2 + c, and
y = ax2 + bx + c. In advanced algebra the functions might be exponentials, rational functions, or

the varieties of periodic functions. Whi'e the goal of these activities is clearly to teach some

mathematical ideas, the software itself is essentially a pedagogically-friendly mathematical tool.

The software does not usually present learning tasks for the students and its only feedback is to

faithfully produce the image that the student asked for.

The basic idea behind interest in graphing calculators and computer software is the belief

that experience with visual images of algebraic expressions will make the abstract symbolic forms

more meaningful and easier to understand. Most mathematicians are convinced that the visual

way of thinking is best. But early experiences with graphing calculators and computer graphing

software have convinced many of us that learning about graphs is not a trivial task. Any

coordinate diagram displays only a small piece of the total graph of a function, and choice of

computer window boundaries or axis scales is a critical prerequisite for producing a picture that

will contain important and illuminating information. Furthermore, we are fording that unless

students get very careful introduction to fundamental graphing concepts they tend to see the

graphs as pictures of the physical phenomena being studied (the path of a baseball in flight or a car

on the tracks of a roller coaster) rather than as displays of relations between numerical variables.

Students frequently have difficulty giving reasonable numerical interpretations to the (x, y)

coordinates of a function graph.

Numerical Exploration To help overcome the difficulties students have with graph

interpretation and to make better connections between the general statements of algebra and the

numerical experiences of prior mathematics, most graphing software now comes in a package that

includes options to produce tables of (input, output) values for functions. In many cases the table

of numerical data can be displayed alongside the graphs and the symbolic expressions.
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The importance of approaching algebra numerically has been most effectively

demonstrated in the work of Frank Demana and Joan Leitzel (1988). Calculators can be used to

clarify syntactic features of algebra like order of operations and to motivate and facilitate

introduction of new number systems and operations like integers and exponentiation. Calculators

and computer spreadsheets are especially helpful in giving a concrete foundation in numerical

work for the concept of variable and relations among variables that are at the core of algebra. The

symbolic expressions of algebra can be used to summarize patterns in number tables, and a

spreadsheet display can be used to produce numerical instances of symbolic relationships.

For instance, the following type of spreadsheet display gives students special insight into

the behavior of a quadratic expressions.

x 3x2 -10x 4 3x2 -10x + 4

-5 75 50 4 129

-4 48 40 4 92

-3 27 30 4 61

-2 12 20 4 36

-1 3 10 4 17

0 0 0 4 4

1 3 -10 4 -3

2 12 -20 4 -4

3 27 -30 4 1

4 48 -40 4 12

5 75 -50 4 29

6 108 -60 4 52

7 147 -70 4 81

8 192 -80 4 116

Moves in both directionstable to rule and rule to spreadsheetare proving very effective in

making students comfortable with the abstract, and ultimately very powerful, language of algebra.

Symbolic Exploration The natural purpose of computer-based graphic and

numerical explorations is to give rich meaning to the symbolic forms of algebra. But some of the

symbol manipulation software itself is being designed and/or used to support student explorations

that lead to learning about rules for symbolic manipulation. For instance, some pieces of

computer algebil software require, or at least permit, users to perform or plan steps in a procedure
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to solve an equation. Some of those computer algebra systems also allow the user to inspect the

solution path taken by the program.

Computer algebra systems with SOLVE, SIMPLIFY, EXPAND, and FACTOR

commands diminish the importance of user skill in those operations. But nearly everyone who

has thought about the situation agrees that algebra students must still acquire some good sense

about symbolsability to predict the general form of results from symbolic calculations and to

recognize insights that can be gained from expressing an algebraic relation in various equivalent

forms. Computer symbol manipulation programs are being used for this purpose in several new

curricula. For instance, to help students recognize the information readily available in factored

form of a quadratic polynomial an algebra teacher might ask students to use their com?uter algebra

program to factor, then graph, then table, and then find zeroes for the following quadratics:

x2 + 5x + 6

x2 3x 18

x2 + 9x + 20

2x2 x 15

x2 +5x +6
etc.

Some of the special features of symbol manipulation software provide surprising and

clever approaches to familiar algebraic topics. For instance, adventuresome students have used

the Mathematics Exploration Toolkit to type in words like MISSISSIPPI, enter the simplify

command, the get the exponential form

I4MP2S4
Using multiple representation software, students are also guided to trace the steps in

symbolic solution of equations or systems and to notice the effect of each step on the graphs

representing the system. It is intriguing (but not always easy to interpret) the sequence of graphs

associated with solving the linear equation

7x 5 = 3x + 8
7x = 3x + 13

4x = 13
13

x=7-4.

At this point we have very little solid research on effects of these activities. Since symbol
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manipulation software is only beginning to appear in handheld computers, there is much less use

of those programs, but there is a group of very enthusiastic proponents for this style of calculator-

and computer-enhanced exploratory learning.

Programming When computers were first used to enhance teaching of algebra,

students had to analyze given problems, design algorithms for their solution, encode the

algorithms in a suitable language, and interpret the computer output. Students were commonly

asked to write programs that would execute the numerical aspects of important formal procedures

like solving equations. Proponents of this programming activity argued that it would help

students to develop general problem solving ability and deepen their understanding of the

mathematical ideas being analyzed for programming. Over the past twenty years many projects

have tried to demonstrate positive effects of such programming in mathematics education

(generally using some version of Basic). The yield from those studies has been disappointing,

and right now it seems fair to say that few mathematics educators make algorithm design or

programming a prominent part of secondary school or college curricula. That is not to say that

programming is without possible benefit, but only that in U. S. schools programming is not an

important part of computing in mathematics.

Computers as Problem Solving Tools
The array of numeric, graphic, symbolic, and multiple representation tools for teaching

and learning algebra is truly impressive. Much of the new software is really very clever. But it is

not hard for a teacher of the current school algebra curriculum to look at spreadsheets, function

graphers, and symbol manipulation programs and then ask, 'How does that relate to what I am

doing in my course?' It is clear that symbol manipulation programs like Derive, Ca lc, and

Theorist relate to current school algebra curricula in much the same way that calculators relate to

traditional skill-dominated elementary school arithmetic curricula. They lead one to ask, 'If the

computer can do all these operations, why should students learn them?' But they don't offer an

obvious way to improve teaching of the traditional skills to individual students. Even more

puzzling is the relation of spreadsheets and function graphers to conventional algebra curricula.

As I have studied and worked on this puzzle over the past ten years I've come to believe

that there are two keys to unlocking the potential of calculators and computers in algebra. Both

follow from looking at calculators and computers primarily as tools for mathematical tools, not

pedagogical tools or electronic teachers. First, we must focus on algebra as primarily the study of

functions and their representations. Second, we must sharply reduce the current emphasis on

algebra as a collection of procedures for manipulating formal symbolic expressions. Both of these

recommendations address the fundamental curricular question 'What is algebra really all about?'

The case for focusing on function as the central idea of algebra is implicit in nearly all of
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the multiple representation software that displays functional relations among quantitative variables.

That software is saying very clearly, 'If you want to think clearly about symbolic expressions,

think about them as rules for functions." Of course, thinking with functions is central to progress

in a broad array of topics in advanced mathematics. It is especially prominent in constructing

mathematical models of interesting quantitative problem situations.

The case for de-emphasizing the symbol manipulation goals of current curricula is

highlighted by the impressive capabilities of easy-to-use computer algebra systems. But the

implications of reduction in traditional training are untested. Tony Ralston (1989) has argued that

The single most important question in mathematics education research
today is this: What is the correlation between being able to do mathematical
symbol manipulations (arithmetic, algebraic, calculus, etc.) and the ability to
understand the underlying mathematics in the sense of being able to apply it
and to build on it to learn higher level mathematics?

The puzzles reflected in these proposals to redefine goals of school algebra have provoked

a great deal of conjectural debate, many informal classroom experiments, and a few careful

research projects. Many efforts only change the curriculum by adding student projects that require

computer help with complex computations. However, a growing number of informal and

carefully analyzed experiments are exploring the effects of radically different course goals and

structures.

Three projects based at the University of Marylandone in finite mathematics, a second in

elementary calculus (Reid, 1988), and a third in elementary algebra (Lynch, Fischer, and Green,

1989)illustrate more daring approaches. The next section of this paper describes some of what

we've tried and what we've learned in the project which we call Computer-Intensive Algebra

(CIA).

Computer-Intensive Algebra

The Computer-Intensive Algebra project set out to capitalize on the opportunities for

improvement of algebra learning and, especially, problem solving that are provided by thcsc new

calculator and computer tools. With financial support from National Science Foundation grants

to the University of Maryland and The Pennsylvania State University and with the cooperation of

schools and teachers in Maryland, Pennsylvania, and Illinois we were able to develop a prototype

for our new conceptions of the content and teaching in elementary algebra.
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New Content Themes
Our new approach to algebra emphasizes three fundamental themes.

Algebra as a Source of Mathematical Models Of all justifications for making

algebra the core of secondary school mathematics, the most convincing is its contribution to

problem solving in nearly every scientific discipline. Traditional algebra courses include a variety

of application problems, but those notorious 'word problems' are really a poor representation of

the ways that algebra can be helpful in reasoning about quantitative problems. The classical coin,

mixture, age, and rate problems are usually rather formal exercises in translation from verbal to

symbolic expressions, followed by manipulations that reveal one (or at most two) unknown

numerical values.

A far more practical and powerful image of applied algebra is embodied in the

contemporary concept of mathematical modeling. An algebraic model is an abstract representation

of variables and relations involved in some quantitative problem or decision- making situation.

The model might be expressed in symbolic form, using equations or formulas or inequalities; in

graphic form; in ordinary language; or in a table of numerical values for the related variables. In

working with a mathematical model to understand a situation it is common to answer a variety of

significant questions of the 'What if?' form: What if problem conditionschange? What if the goal

changes? Models can be used to describe and understand a situation, aswell as to find specific

numerical values of variables.

If school algebra is to provide students with the understandings and skills required by

realistic quantitative problem solving, it seems essential that the curriculum emphasize the global

concept and component processes of mathematical modeling:

Identification of variables and relations among them.

Representation of the relations among variables in numerical, graphic, and

symbolic forms.

Drawing inferences about modeled relationships.

Recognition of limitations in application of mathematical models to

situations.

We believe this goal dictates substantial change in the treatment of algebra and its applications.

Variables and Functions Looking at applications of algebra from a modeling

point of view, one is struck by the need to make several changes in the way traditional topics are

treated. First and foremost is the concept of variable. To students of traditional algebra curricula,

a variable is a letter that stands in place of a definite but unknown number. The principal activity

of algebra is finding x .

When algebra is used to provide symbolic models of quantitative relationships, the letters

stand for quantities that really do change as situation conditions change. The important problems
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are not only finding a specific combination of values for those variables to satisfy an equation, but

determining the effect of changes in one variable on the values of others or finding the value of

one variable that produces maximum or minimum value for some other variable. Thus if students

are to use variables and expressions effectively in constructing and reasoning about mathematical

models, they must develop an understanding of variables that is richer and different from

conventional curricula.

In mathematical models it is also nearly always the case that questions of interest involve

relations among two or more variables. One or more input variables are used to predict the values

of other output variables; the outputs are functions of the inputs. For students to become adept at

working with such models they need a confident understanding of the function concept and its

various representations. It is important that they be able to construct and interpret tables of input-

output values and graphs and to recognize, from the form of an algebraic function rule, the pattern

of numerical relationship modeled by that rule.

Effective mathematical modeling requires an ability to inspect scientific or economic data

and choose a reasonable model for relations in that data. Conversely, when an algebraic model is

proposed, the user of that model must have good intuition about the numerical and graphic form

corresponding to that model. Thus students of the new functions/modeling algebra must be very

familiar with the important families of elementary functions--polynomial, exponential, rational,

and periodic.

We believe that the understandings and skills related to variables and functions used in

algebraic models are also quite different and richer than what traditional courses, with their

emphasis on formal rules for manipulating symbolic forms, provide. Furthermore, the tools

provided by computer spreadsheets, function graphers, and symbol manipulation programs are

extremely helpful in developing the new understandings and skills.

Conceptual and Procedural Knowledge The proposed goals of teaching about

variables, functions, and mathematical models are hardly controversial. However, it is quite

reasonable to ask how an already full algebra curriculum can be revised to find time for the new

and deeper conceptual and problem-solving objectives. The obvious target of opportunity is the

vast amount of time now required to develop student skills in the many symbolic manipulations of

traditional curricula.

Of course, any specific algebraic skill targeted for reduced emphasis in the curriculum will

find defenders who illustrate its role in theoretical or practical science or in an aspect of advanced

mathematics. Furthermore, many mathematics teachers are committed to the principle that

proficiency in procedural skills is a prerequisite to understanding of basic concepts and problem

solving strategies in any branch of mathematics. Despite these reasonable concerns about effects

of changing skill priorities, it seems inevitable there will be a general drift in the direction of less
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emphasis on those manipulative skills that can be performed by computers and calculators. It

seems a high gain/moderate risk project to test the possibilities.

It seems likely that an algebra curriculum which emphasizesvariables, functions, and

mathematical models--with computer-aided execution of required numeric, graphic, and symbolic

manipulations--will permit students to study very difficult quantitative problems without following

the traditional regimen of skill building. Furthermore, there is nothing about such a curriculum

structure that prevents later development of formal symbolic reasoning skills. In fact, it is

plausible that manipulative skills can develop much more effectively if based on rich numerical,

graphic, and application experiences in algebra. What we need is prototype curricula that embody

these features and test their feasibility.

Scope and Sequence of Topics In our Computer-Intensive Algebra, the core of

the program is a printed student textbook of nine chapters. Our program is intensive in its use of

computers, but it is not computer-based in the sense of early computer adaptations of programed

instruction.
From a mathematical point of view, our text is structured to develop student understanding

of the mathematical modeling process; the use of numerical, graphic, and symbolic representations

in building and studying models; and the families of elementary functions that are principal

components of many significant models. The chapters and their recommended sequence of

teaching are as follows:

1. Variables and Functions - This chapter introduces the fundamental concepts of

variable and function through study of a rich array of problem situations in which

quantitative variables depend on or are functions of each other. Students learn

how to construct and interpret tables, graphs, and symbolic rules that model

functional relations among variables.

2 . Calculators, Computers, and Functions This chapter introduces a

succession of computer tools for use in studying functional relations among

variables: Calculators for simple models, computer table and graphing programs

for more complex functions and for questions that require a global view of the

function, and computer symbol manipulation programs for solution of equations

when successive approximation (numeric or graphic) is ineffective.

3 . Linear Functions - This chapter examines the numeric, graphic, and symbolic

properties of the important family of linear functions--relating slope, intercept, and

rate of change to the symbolic form f(x) = mx + b. The goal is to have students

able to identify linear patterns in data, graphs, or verbal conditions and to use their

calculator and computer tools to answer questions about those patterns.

4 . Quadratic Functions - This chapter examines the numeric, graphic, and
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symbolic properties of quadratic and higher degree polynomials and the use of

those polynomials (especially quadratics) in modeling relations among quantitative

variables. The goal is to help students become adept at recognizing probable

quadratic patterns in tables or graphs of data, to find rules to match those patterns,

and to use various computer tools to analyze those patterns.

5 . Exponential Functions - Survey and analysis of functions with rules of the

form f(x) = C ax and their applications.

6 . Rational Functions - Analysis of numeric, graphic, and symbolic properties of

simple rational functions with their application to several important examples of

inverse variation in scientific settings.

7 . Algebraic Systems This chapter examines use of computer numeric, graphic,

and symbol manipulation tools to study systems of related variables. One part of

the chapter examines systems involving several functions of a single input

variable. The part of the chapter examines systems with several input and several

output variables and the equations and inequalities that often model important

questions in those systems.

8-9. Symbolic Reasoning - These chapters introduce the concepts of equivalent

expressions and equivalent equations/inequalities and the formal reasoning

processes by which such equivalence can be established. The goal of the chapters

is to develop student ability to use formal reasoning as a complement to their

explorations of computer-generated numeric, graphic, and symbolic patterns.

These chapter titles and explanations make clear the way that our CIA program places variables

and functions at the heart of algebra.

In design of the text material we have been strongly i-fluenced by our desire to implement

several fundamental pedagogical themes. First, we wanted to have the key mathematical ideas and

methods arise from encounters with problem situations that were as convincingly realistic as

possible. Thus the first section of the first chapter, and nearly every other section of every other

chapter, begins with a situation which students are asked to analyze. They are asked to identify

key variables, relationships, and objectives in planning of a school talent show. In other chapters

they begin the study of quadratic functions with several situations involving accelerated linear

motion, the study of exponential functions with situations involving growth of populations and

interest-earning bank accounts, and the study of rational functions with situations involving

inverse variation examples of sound, light, and gravitational intensity. To develop understanding

of specific and general aspects of mathematical modeling, we have included reasonably frequent

activities in which students plan and conduct data collection to find relationships among variables.
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This emphasis on teaching through situations is very much consistent with the emerging

interest in situated cognition (Brown, Collins, and Duguid, 1989) and anchored instruction

(Vanderbilt Group, 1990). He weever, we are not as pessimistic about the limits of mathematical

learning to specific contexts (Perkins and Salomon, 1989). In fact, we make specific efforts in

each chapter of our course to help students formulate concepts and meta-cognitive understandings

that transcend the specific embodiments from which key mathematical ideas are formulated. As

we have worked to formulate our new approach to pedagogy in algebra, we have consistently

worried about the interplay between abstract mathematical ideas and representations and the

examples of those ideas that are meaningful to young students.

Of course, our approach to instruction also includes frequent computer explorations-

typically asking students to work in pairs a: the computer to pose and answer many questions that

are plausible in a rich problem setting. Computer graphic, numerical, and symbol manipulation

programs are used both to solve problems and to discover general patterns in the subject.

New Instructional Themes
The algebraic capabilities of calculators and computers suggest some dramatic changes in

goals for school algebra curricula. They also provide opportunities for change in predominant

styles of teaching and learning (Heid, Sheets, and Matras; 1990). In a curriculum dominated by

goals that focus on training students in execution of symbolic algorithms, the teacher's primary

role is to demonstrate new procedures and to monitor student practice of those procedures,

including review of homework. Despite all we know about the importance of active participation

in learning, students play a largely passive role in the traditional classroom process--watching and

then imitating the teacher's behavior.

New Roles for Teachers In a curriculum that de-emphasizes training in routine

procedural skills, that emphasizes computer-based exploration of ...1gebraic concepts like variables,

functions, and graphs, and that asks students to construct and study mathematical models of

realistic quantitative problem situations, teachers must become adept at a variety of unfamiliar

instructional roles.

In classroom discussions focused on construction and interpretation of mathematical

models, the teacher must be a catalyst and facilitator of group discussion. Typical modeling

situations have many interesting facets and students can often bring to analysis of those situations

personal experiences and insights. The teacher must play a flexible role of guide for such

discussions.
When students turn to a computer lab activity--either to explore some new algebraic

concept or to study an algebraic model of some structurally rich problem situation--the teacher

must also play a less controlling role than in traditional instruction. Students at separate
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computers will be making different discoveries and encountering a range of different problems.

Teachers must circulate and provide stimulation and feedback to this array of activities. Then they

must find some satisfying way to help the entire class reflect on their lab experiences to integrate

their observations into coherent knowledge.

Both laboratory and extended problem solving activities present new challenges in

management of classroom time. They tend not to fit so neatly into the prescribed time blocks of

typical school schedules, and as students work at their own pace in a lab, the differences in their

progress are frequently considerable. Day-to-day planning for this diversity is a real challenge.

As if the challenges of teaching in less structured discussion and laboratory settings were

not enough, teachers of computer-intensive algebra programs must find new effective strategies

for assessing student learning and assigning grades. If students are accustomed to working on

extended problem solving activities based in a single modeling situation, it makes little sense to

assess their learning with a sequence of unrelated skill items. If course goals can no longer be

described by listing skills to be mastered, then traditional "percent correct" scales are questionable

guides to grading.

All of these new roles pose a substantial challenge for teachers in computer-intensive

algebra. However, they also promise an impressive reward of greater student participation in

learning and an attractive new relation between teachers and studentsas collaborators in study of

mathematical problems.

New Roles for Students The new roles for mathematics teachers imply and are

implied by new roles for students as well. In any laboratory setting for learning students must

adopt more self-directed strategies. This includes learning to cope with open-ended tasks, to

make confident judgments about the quality of their understanding and problem solving, and to

work effectively with others in a cooperative spirit.

In a curriculum that emphasizes conceptual learning and complex problem solving,

students must adopt more reflective habits, looking for bigger pictures, and they must sustain their

attention over longer time frames than those required by the typical skill-oriented lessons. They

must make notes on patterns in their computer explorations and write significant reports on the

results of their problem solving.

It seems unlikely that any teacher would be disappointed if students became proficient in

these new classroom learning roles. However, it is also likely that such proficiency will not

develop quickly or perfectly, and the impatient teacher will probably find frequent cause for

dismay and return to the more tightly structured, teacher-controlled pattern of typical algebra

instruction. We believe that would be unfortunate.

Production of a computer-intensive school algebra program that embodies the

mathematical themes of modeling and functions, and that emphasizes conceptual rather than
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procedural knowledge, required development of new student texts, guides for teaching, tests of

student achievement, and computer software environments. Our approaches to each of these

tasks evolved over the years of the project, and we expect that other computer-intensive curricula

in the future will take different forms from those we have produced.

Evidence of Effects
Since the algebra program we developed takes non-traditional curricular and pedagogical

approaches to new kinds of goals for elementary algebra, we have been studying the effects of our

material in a variety of ways. Through conventional and computer-based tests and individual

student interviews we have probed the understandings and skills that students acquire. We have

tried to compare those attainments to the algebraic ideas and skills of students in more

conventional programs. We have made ethnographic and scheduled observations of CIA classes

in action and have again compared the classroom interaction patterns of the computer-intensive

classes with those of traditional classes.

Our data analysis from the most recent field trials is not yet finished. However, we have

data from early field trials and from several targeted doctoral dissertation studies that give some

hints about the likely picture. First, it is clear that the new focus on applications, modeling, and

computer-aided learning and problem solving makes dramatic change in the content and interaction

patterns of classrooms. In CIA classes there is more talk about applications, more attention to

relating representations of ideas, and more student activity than in traditional skill oriented classes

(Heid, Sheets, and Matras, 1990).

Second, it seems clear that CIA students acquire a much different and richer understanding

of key concepts like variables and expressions or functions than do students in traditional algebra

courses. They develop a more diverse repertoire of problem solving strategies and are less

inclined to give up quickly in face of a problem for which they can't see an obvious solution path.

Much of this flexibility in problem approach seems related to use of several different computer

tools to perform important operations like solving equations and inequalities. Furthermore, CIA

students seem more comfortable dealing with approximation in method and result-a striking

change from the traditional image of mathematics as the most exact and exacting of subjects.

Finally, it appears that students who follow our exploratory, situation-based, computer-

aided introduction to fundamental algebraic ideas are well-prepared to move to the next level of

more abstract symbolic reasoning which is the starting point for traditional instruction. Students

whose instruction emphasizes functions, modeling, and multiple computerrepresentations of

algebraic ideas do not invariably form perfect conceptions and skills in the subject. However, it

looks to us as if the refocusing of algebra instruction made possible by computer tools permits

students to work very much more effectively in solving the problems to which algebra is

applicable.
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Summary
My enthusiasm for developing flashy high-tech solutions to educational problems

probably reflects another typically American trait. But American schools are very conservative

institutions, and, as I suggested at the beginning of this paper, very little of the computer flash and

dash is commonplace in mathematics classrooms at any level. Nonetheless, we are getting

moving on the task of using computers as tools for teaching, learning, and problem solving in

our mathematics classes.
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Discussion

Uetake:

Morimoto:

Fey:

of Professor Fey's paper:

Thank you Professor Fey for your thoughts on new and very interesting computer

uses in school mathematics. Now for questions or comments. Who would like to
begin?

I found your discussion very interesting. The presentation involved a move from

made-up, artificial problems to real life problems and is an intriguingone. I want to
ask if this approach has actually been tried out and, if so, what have the student

reactions been and what sort of problems have arisen?

We've been developing and field testing material for the past six years and we've tried

the material in several different kinds of schools with several different kinds of

student populations. As we've gone along, we've learned how to do things better so

it's not clear to me that we've yet reached the right answer or the final answer. But I
think there are a number of indications of fairly striking success in getting students to
think in this new way and, as Dan Teague was suggesting in an earlier question, how

to use the technology to really solve problems. Students can develop an ability to

apply these tools to solve problems, very interesting and more complex problems.

But I don't think we've by any means got the final answer on it. There are many

ways it can be done and what we've done could be improved.

Morimoto: Is there anyone else who has been doing this kind of research?

Fey: Yes. Dan Teague's school, at a different level in the curriculum, has been doing this

kind of work and there are some other people who have tried things similar to it.

Dan, do you know of other people who have? I think our project is the one that has a

full and complete curriculum at this point. Judah Schwartz and his colleagues at

Harvard have also been doing a lot of work in this area Some are working along

similar lines but they aren't quite as far along in terms of developing a full curriculum,

to the best of my knowledge. And the things that Sharon Dugdale is going to talk

about and the things that Frank Demana is going to talk about are very similar. There

is a similarity of feature. I've talked about elementary algebra for beginning algebra

students and they'll talk about similar ideas, perhaps at a more advanced level.
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Nohda: Your talk was different in a couple respects from the paper handed out yesterday.

Fey: Yes. When I saw the papers that the other Americans had prepared, I tried to say less

about some of the things that they were going to talk about, and somewhat more

about some of the things in the latter part of my paper.

Nohda: I looked forward to the information from you. It was mentioned by someone earlier,

during a discussion, that the term ill-structured was used regarding problems. In the

Japanese presentations, the term open-ended has been used. Would it be reasonable

to interpret these as being more or less synonymous terms?

Fey: I'm not sure that's the case. For example, I would call the problems from the 1980's

from Japanese studies open-ended in that they can go many directions, but I wouldn't

call them ill-structured. They have very clear structure to them. The problems I

talked about are probably ill-structured in the sense that there isn't a clear question.

There aren't clear criteria for deciding whether you've answered it or not. You could

go many directions in forming the question, not just in finding the answer. So I think

there is somewhat of a difference between the two.

Dugdale: In regard to Mr. Morimoto's question earlier, one difficulty that sometimes arises in

integrating this kind of work into an algebra curriculum involves students who have

learned to play the "mathematics in school game" very well. These students are very

good at symbol manipulation, they have always made A's and consider themselves

good mathematics students, and then the new curriculum confronts them with a

change of what's acceptable and what's rewarded. Have you noticed that some of

your previously most successful students are suddenly having difficulties with the

new demands and that they resent it? What do you do about that? More generally,

does this issue work itself out over a period of months, or does it persist as a

problem?

Fey: Yes, we've noticed that sort of thing. With some students it persists if they are not

able to handle the new demands. In many cases it works itself out over a period of

time. I guess we try to keep working with the students to get them to believe that

what they are learning, the new stuff, is important and that if they had the old skills

but didn't have what we're trying to do, they've got nothing very useful. But I guess

students are like all the rest of us in that they like to feel successful and it's harder to
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see that you've succeeded in this new kind of material. There aren't the clear

benchmarks of progress, so I guess we keep working with the students and try to

convince them that what they're doing is good and, in many cases, we succeed. Of

course, there are cases where we don't succeed. There are cases where students

finish the year believing that they've not gotten the best stuff.

Dugdale: On the bright side, do you see students who have not considered themselves very

successful in mathematics who find the new approach more engaging and become

more successful?

Fey: Absolutely. One of the most encouraging things about this work is to encounter

students who have not been successful, but who now can be.

I.Jetake: The next question, Professor Teague.

Teague: I'll be speaking on Wednesday about this question that we are now addressing. We

teach a precalculus course which follows two years of algebra and it is very difficult

for some of these students who have thought of mathematics as memory (i.e., you

remember mathematics...you don't think mathematically). Often times they have to

struggle quite a lot to deal with the new ideas and to get over the feeling that asking

them a problem they haven't seen before and expecting them to use what they know

to create a solution, rather than asking questions we've taught them to do and asking

do you remember how to do it. It takes great patience and there are some students

who get, as Jim said, very excited about mathematics for the first time because they

do get to think rather than just remember.

Becker: We're talking about using new technology in teaching mathematics and you're using a

teaching method that is made possible by the introduction of the new technology.

What things that students get out of this are the most important?

Fey: We have an opportunity to give students the feeling that the mathematics they are

learning applies to real situations, believable situations. That's one of the first things.

I think the second thing is, as Dan has suggested, students who don't find the

traditional symbolic material at all attractive find that they can do mathematical work,

that the mathematics is not limited to the ability to live in this very small world of

specific rules. There's an opportunity for each student with different learning styles
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and different interests to contribute in mathematics class.

Hashimoto: Professor Becker made reference to teacher training earlier. Looking at examples like

yours, in the example you gave, it seems that the training, abilities, and quality of the

teacher would be extremely important. As you prepare to disseminate this material,

what kind of training and related things do you find necessary for the teachers?

Fey: Well, many of the teachers who are now teaching in the traditional algebra course

don't have the perspective about mathematics that we'd like them to have. We

haven't disseminated this material very broadly yet. We've worked ver, closely with

teachers. They've spent a lot of time asking questions and we've been there to

support them very often. Rapid dissemination of this program would be a severe

problem. My feeling is that what the main use of our material has to be in teacher

education first and then, after some time when teachers have become comfortable with

this whole point of view, with many students. I don't think it can be massively

implemented quickly.

Kaida: My question relates to Mr. Hashimoto's question and has to do with evaluation. In

terms of training your teachers to teach the material, as a classroom teacher I'm

thinking about how are these students evaluated? Because it always comes to the

point where we need to assign grades.

Fey: You'd like to have them evaluated on how they can tackle a very large problem as a

project, but there are some intermediate strategies that you can use. Along with our

teaching material, we have a package of sample tests that we've developed. The tests

emphasize student understanding of graphical images; for instance, can you interpret

mathematical results? Then along with every one of these tests we have a section in

which students go to the computer and use it to solve problems. We actually have

some experience with having students take tests at the computer, so it's not

impossible.

Sawada: As a Japanese teacher I feel very envious of American teachers in that they can freely

put a new curriculum together and into practice. Japanese teachers are constrained to

operate within set guidelines and therefore the introduction of new methodologies is

rather slow. I would like to ask to what extent must a technique have spread and

penetrated the curriculum in the United States before one can say this technique is
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used in America, or that this is an American technique?

Fey: I think you know well that the apparent freedom in America is e..y that, "apparent"

freedom, because there are many informal constraints that prevent the kind of

innovation that I'm talking about here. In some ways, perhaps you in Japan have

more opportunity to put something dramatically new in place than we do because you

can say this is going to be it whereas, we've got to convince the country that it's

different and useful. I don't think I'll even try to answer the last part of the question.

Uetake: Our time is up and I would like all of you to join me in thanking Professor Fey. We

are now going to take a short break...about twenty minutes.

End of Discussion
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USING CONSTRUCTION PROGRAMS IN THE TEACHING OF GEOMETRY

Jonathan Choate

Groton School

introduction
More than 12 years has passed since the first microcomputers began to arrive in our

schools. Some excellent programs such as the Geometric Supposer, Geometry Grapher, the

Geometer's Sketchpad are now available to be used in teaching geometry. These programs

provide exciting opportunities for teaching geometry because they can be used to perform

geometric experiments. Geometric figures can be constructed and analyzed, hypotheses

formed and then tested on other figures. This process allows the user either to prove or

disprove the hypotheses by counter-example or to find some useful information for proving

them. This paper will briefly look at how computers are being used in the geometry classroom

and then compare the three most commonly used construction programs. Each program has

its strengths and weaknesses and the program appropriate for a given course will be determined

by the goals of the teacher.
Although this paper will discuss only three programs, there are other types of software

appropriate for the teaching and learning of geometry. Computational programs such as

spreadsheets can be used to perform many different types of calculations. They are very useful

when one studies the more computational aspects of the subject such as area and volume.

Tutorial programs such as Sensei's Geometry can be used to supplement the material presented

in a course and be put to good use by the students who need extra help. There are also

programs that guide students in writing proofs. There are computer languages, such as

LOGO, which feature turtle graphics and which can be used with great success in a geometry

class. Finally, there exist programs which can bring new ideas into the classroom such as

discoverForm, a graphic design tool which allows the user to create a design and then

transform it using linear affine transformations and 3D Images which permits students to

construct, measure, and transform a variety of three dimensional geometric shapes. There are,

also, a variety of programs available for the study of fractal geometry at a level appropriate for

secondary students.

2. Using Construction ProgrAnts
Construction programs can be used to present new concepts and to have students discover
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new results as a class, in small groups or individually. Here are three commonly used

instructional settings to accomplish these goals. The method used is dependent on the
equipment available.

-If only one computer and a large display device is available, the computer can be used to

demonstrate concepts for the entire class. In a sense the computer is being used as an

electronic blackboard.

-If a lab setup with many computers is available, students can do their own experiments.

In the beginning, handouts defining the experiment are very helpful. If the students work in

groups of two or three, each student can assume a different task: one can be recorder, another

can type at the computer. Later on, students can also use the lab to discover results on their

own. There are some geometry courses being currently taught in this mode.

-If you have enough computers available, students can do projects individually. This

method can be used to give students an opportunity to enrich and extend what the course

provides.

Teachers who have used construction program as a regular part of their teaching have

found that students often discover things which were not part of the original lesson plan. By

listening carefully, and by encouraging students to pursue their own conjectures, many

teachers have enabled students to discover a lot of geometry on their own.* For an account of

a course taught almost exclusively using a discovery method see Houde and Chazan's Using

Computers in The Teaching of Geometry.

The design of the classroom environment is important and plays a major role in making

the use of technology effective. A classroom design which has been used successfully at both

the secondary and college level is shown in Figure 1. Students are seated in movable chairs

which allow them to either sit at the central U-shaped main table or to work in groups on the

computers behind them. The instructor has access to a computer and a projection device at the

top of the U-shaped main table and can either project onto a screen hanging in the front of the

room or onto one of the side walls. This setup is versatile and has many advantages. First, it

is very easy to change instructional modes. A teacher can present material to the class as a

whole and then have them do experiments on the computer easily and quickly, because the

students only have to turn around and they are at the computers. Secondly, when the students

are working at the computers, the teacher can easily see all the monitors at once and keep track

of how the class is doing as a whole.

*Much of the preceding appears in The Teachers Edition of Geometry as part of the Using

Technology section. It is used with permission of Houghton Mifflin Company.
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Figure 1. Classroom design for using technology

Likewise when the students are all gathered around the U-shaped table doing pencil and paper

work, it is easy to see what each student is doing. Thirdly, the computer in the front of the

room with the projection device can be used to guide the students through more difficult

material. This design has been used to teach a wide range of secondary mathematical topics

and is as effective for the teaching of algebra as it is for the teaching of calculus.

3. Consituctiamiragrama:AComarisiln
The peometric Supposer, Geometry Grapher and The Geometer's Sketchpad are three

construction programs currently being used in secondary mathematics classroom across the

United States. Although each program allows the user to construct a broad range of geometric

figures and to engage in a variety of geometric activities, there are some fundamental

differences. A brief description of the role each program was designed to play in the geometry

curriculum is followed by a sample lesson plan illustrating how the software might be used.

The lesson plans are designed to give the reader a sense of how each program operates and are

not intended for classroom use. Writing precise step-by-step activity sheets for the use with

construction programs is not easy because students will often experiment on their own and

create constructions which differ from what was intended. Since all construction programs

label points automatically, it is very difficult to know ahead of time what points will be labeled

with what letters.
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A. The Supposer series
The Geometric Supposer was the first geometry construction program to appear in

classrooms. It is well designed and easy to use and is available for the Apple ][ series, IBM

compatibles and the Macintosh. The series consists of four programs: The pre-Supposer,

Supposer: Triangles, Supposer. (badrilaterala, Supposer: Circles. The publisher has also

made available extensive collections of activities. The pre-Supposer is designed for use in

middle schools while the latter three programs were designed to be used as a part of a standard

high school Euclidian geometry course in a variety of ways. The main purpose of the series is

to give students a tool for constructing and measuring geometric figures so that they can come

up with conjectures about the figures. This is accomplished by performing constructions on a

figure, measuring appropriate lengths, angles and areas, calculating appropriate ratios and then

repeating the process on a different figure of the same class. For example, after discovering

that any two medians (the line which joins any vertex of a triangle to the midpoint of the

opposite side) of a triangle intersect at a point such that the ratio of the distance from the vertex

to the point to the distance from the point to the midpoint of the opposite side is 2:1, students

might try to generalize the result by examining intersection of the lines joining the trisection

points of the sides. The Supposer: Triangles could be used as follows. The Supposer is a

menu driven program and all operations are defined by selecting options from menus which

appear at the bottom of the screen. Figure 2. shows what the screen would look like after the

following activity was completed.

Data

II = 5.62
HG : 1.8?
31/11G=3
All = 4.8
HE : 1.6
PH/IIE=3

D Draw
I, Label
E Erase

II Measure
S Scale change

R Repeat
N New triangle
Q Quit

Figure 2. Supposer: Triangles screen
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Activity 1: exploring the intersection of social lines inside a triangle.

1- Select New from the main menu and construct a 7, 8, 9 triangle using the
SSS option. A triangle ABC will appear on the screen. There is a scale
option so that the triangle can be made larger or smaller.

2- Construct a point E on BC such that CEIBC-113.
3- Construct a point G on AC such that CGIAC=1I3.
4- Construct segments BG and AE.
5- Label point H, the point of intersection of the two segments BG and AE

constructed in part 4.
6- Use the Measure option to find the ratios AHIHE and BH /HG.

7- Use the Repeat option to perform the same construction on a different

triangle. Find equivalent ratios for this triangle.
8- State a conjecture suggested by this activity.

What makes the Supposer so useful is that after a construction is done once, it can then be

repeated on any other triangle by using the Repeat option which will redo the entire

construction automatically. Once the construction is complete, the Measure option can be used

to collect data and calculate ratios which are all printed in a data window on the left hand side of

the screen. Since a record of all the data gathered and ratios computed is present on the screen,

it can be analyzed and conjectures made. In the preceding example, the ratio turns out to be 3:1

instead of 2:1. Many students will ask about what happens if you usequadrisection points,

and they are well on their way to finding a general result. Once the students are convinced they

have a result which holds true in a number of examples, they can start looking for a proof.

The Supposer does has have some drawbacks. First, you have to use separate programs

for each type of figure you wish to study and your options are limited. There is no Supposer:

Pentagons. Secondly, there is a limit on the size of the construction you can perform. You can

not label more than 26 points. Finally and most importantly, it allows access to only some of

the geometric tools which are now included in the secondary mathematics curriculum. Missing

are any use of coordinate methods and transformations including translations, reflections,

rotations and dilations. Since one is forced to use only the constructions known to Euclid, this

is a good program for the study of classical Euclidian geometry but not for work in coordinate

or transformation geometry.
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B. GICILUALtGrauker
Geometry Grapher is a construction program which was developed several years after the

Supposer and was designed to make up for two of its major deficiencies: lack of coordinate and

transformation methods. It is produced by the Houghton Mifflin Company to supplement

Geometry by Jorgenson, Brown and Jorgenson. Geometry Grapher, like the Supposer, is

menu driven and all menus appear at the bottom of the screen. It is available for IBM

compatibles and the Apple ][ series. Unlike the Supposer, Geometry Grapher does not

constrain the user to one class of figures such as triangles. Points can be defined by

coordinates, by finding intersections of lines and circles, by specifying a ratio in terms of other

points on a line segment and by a movable cursor. Polygons, or shapes as they are called in

the program, are defined by specifying vertices. For example, if points A, B, C, and D are

defined then the shape ABCD is the polygon consisting of segments AB, BC, CD, and DA.

Lines can be defined either by specifying a segment contained on the line or by equation.

When defining a line by equation, one has a choice of using any of the three most common

linear forms: slope-intercept, point-slope or standard form. Like the Supposer the program

allows the user to collect data which is presented in a data window. Unlike the Supposer, once

a point is defined, its coordinates are given and, once a line is defined its equation is displayed

in the data window. The following activity has been used to help students come up with an

alternative proof of the theorem which states that the sum of the angles of a triangle is 180

degrees. Figure 3. shows what the screen would look like after the following activity was

completed.

Data Window

A(-6,-5)

B(-2,8)

C(8,-7)

Si: ABC

D(-4,1,5)

E(3,.5)

AC -14.14

slope AC:-.143

L1:9:-.143x+7.71

B(-2,8)

A( -6 -5)

F( -1t 18)

S2: BO'

C(12,6)

C(8 -7)

BA 8)
S3: tu

C)onstruct M)easure T)ransforo Doom E)rase Disk P)rint H)e 1p Q)uit

Figure 3. Geometry Grapher screen
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Activity 2: 1 ' 1 11 1 1 '

1- Construct three points on the screen such that point A is in the third

quadrant, point B is in the second quadrant and point C is in the fourth

quadrant.
2- Define ABC as a shape. Measure segment BC.

3- Construct a line through B parallel to AC by pressing C for construct, L for

lines, E for equation. Answer the prompts for inputting the equation of the

line using the data printed for segment BC in the Data Window.

4- Construct the midpoint D of side AB by pressing C for construct, P for

points, R for ratio and entering .5 when asked for the ratio of AD /AB.

5- Repeat the preceding step to construct he midpoint E of BC.

6- With D as center rotate triangle ABC through 180 degrees forming triangle

BAF.
7- With E as center rotate triangle ABC through 180 degrees forming triangle

GCB.

8- Use Measure to collect data about triangles ABC, BAF and GCB. Argue

that triangle ABC is congruent to triangles BAD and CGA and that F, B and

G are collinear. Use this figure to prove that the sum of the angles of

triangle ABC is 180.

Several features distinguish Geometry Grapher from the Supposer programs. First,

students can dente geometric objects algebraically and use algebraic arguments to prove

facts about geometric entities. For example, in the preceding example, lines were proven to

be parallel by showing they had the same slope. Secondly, transformations are available

and can be applied to any defined figure. This allows students to use transformations to

create congruent and similar figures which can later be used in proofs. Finally, Geometry

Grapher permits the use of 52 points, so more complicated constructions are possible than

with the Supposer. It does not have the Supposeel Repeat feature which makes repeating

the same construction on different figures time consuming, nor does it have the capability

of creating dynamic diagrams as can be done with the Geometer's Sketchpad.

C. The Geometer's Sketchpad
The Geometer's Sketchpad was developed as part of the Visual Geometry Project at

Swarthmore College and is currently being marketed by Key Curriculum Press, who has just

published an innovative new book called discovering Geometry. They will soon be publishing
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supplementary materials which will make use of the meter's Sketchpad.

The Sketchpad is a Macintosh program which takes full advantage of the Macintosh

interface. All constructions are performed by clicking on objects on the screen and selecting

appropriate operations from pull-down menus. It is easy to use and is the most powerful of the

programs discussed in this paper. The following activity is designed to help students explore

some of the properties of the centroid of a triangle. Figure 4. shows what the screen would

look like after the following activity was completed. The relationship between the path of the

vertex and the path of the cenuoid resulting is an interesting one and well worth investigating.

F

Area(AGC) = 1.03 square inches
Area(BGA) = 1.03 square inches
Area(BGC) = 1.03 square inches

Figure 4. Sketchpad screen
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Actiyity 4: hivestigating the areas of the three triangles formed within a
triangle using the centroid as a vertex.

I. Use the line segment and label tools to construct a triangle on your screen.

2. Using the mouse, highlight one of the sides by clicking on it. Pull the

construct menu down and select Point at Midpoint. Repeat for the other

two sides.
3. Select the line segment tool, and construct the line joining one of the

vertices of your triangle to the midpoint of the opposite side. Repeat the

preceding for the other two vertices. You have now constructed the three

medians.
4. Click on one of the vertices, hold the button down and move it. As you

move the mouse, the vertex you clicked on will be dragged around the
screen and the rest of the figure will change accordingly. What do you

notice about the three lines you constructed in the preceding step?

5. Select the pointer tool, click on one of the medians, hold the shift key

down, select a second median, pull down the Construction Menu and select

Point at Intersection. You have now constructed the Centroid of the

triangle.
6. Select the pointer tool, click on the centroid and, while holding the shift

key down, click on two other vertices. Pull the Options Menu down and

Select Polygon Interior. The triangle formed by the centroid and the two
vertices you selected should now be highlighted. Pull down the Measure
Menu, select Area and the area of the triangle you just highlighted will

appear in the upper left hand corner of the screen. There are two other

triangles which can be constructed in a similar fashion. Construct them.

7. Click on one of the vertices of the triangle and drag it around the screen.

What do you notice about the areas of the three triangles you just formed?

State a conjecture.

The Sketchpad has two other features which will allow_ students toplay with geometric

concepts in ways never possible before. The first of these is the Trace feature. In the

preceding example, if one were to highlight the centroid, select Trace from the Display Menu

and then drag any other vertex around the screen with the mouse, the path of the centroid will

be plotted on the screen. Figure 5. was created by dragging vertex A along the line AH and

doing a trace of the centroid which appears as a path of small heavy black circles.
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Figure 5. Trace figure

The Sketchpad has a second related feature. If one creates a line or circle on the screen

and then constructs a point on that object, that point can then be made to move along the

given shape using the Animate feature. Figure 6. was created by moving vertex A around a

circle and plotting the trace of the ceniroid.

Figure 6. Circle created using the Trace feature
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Trace and Animate introduce a new, dynamic aspect to the study of geometry and will

permit teachers to easily pose problems never thought of before. These two features are

unique to this program and are what differentiate it from Geometry Grapher and the

Supposer. The Sketchpad allows students to construct geometric objects and to search for

relationships in ways not possible until now. This is by far the most powerful program of

the three and has set a new standard for future geometric construction programs.

Programs like the Sketchpad will give students a new problem solving tool: the ability to

build interactive models of problems. Consider the following problem which appears in

many calculus books.

A four foot high picture hangs on a wall in an art gallery. The bottom of

the picture hangs 2 feet above the eye level of a person viewing it. Where

should the person stand so that the angle formed by the top of the picture,
the person's eye and the bottom of the picture is a maximum?

Although this problem is often solved using calculus, it can bedone using only elementary

geometry. To arrive at a geometric solution, students must first play with the problem and

get a feel for it and this is where the Sketchpad can be very useful. Figure 7. shows a

Sketchpad diagram used to solve the problem. In the diagram, segment AC represents the

picture and Ei and E2 represent two different viewing locations.

Figure 7. Art gallery problem diagram
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Activity 4: Finding the best viewing angle.

1- Construct a vertical line segment AB on the left hand p&rt of the screen.
2- Construct a point C on segment AB such that AC has length 4.
3- Construct a point D on CB such that CD has length 2.
4- Construct a line through D perpendicular to AB.
5- Construct a point E on the line constructed in part 4 to the right of

segment AB.
6- Measure segment DE and angle AEC.
7- By dragging point E along the line constructed in part 4, collect data to fill

in the table below.
Length of DE I angle AEC

8- Use your table to find an approximate solution to the problem.
9- To find the exact solution, notice that if a is some value less than the

maximum value of angle AEC, then there are two distinct points El and E2
which will produce a viewing angle of a degrees. Argue that if angle

AEiC is equal to angle AE2C then points A, C, El, and E2 must lie on a
circle.

10- Construct the circle described in part 9.
11- Drag point E along the line constructed in part 4 and watch what happens

to the circle you constructed in part 10. Describe in words what is
happening.

12- Use your observations in part 11 and what you know about circles to
calculate the exact answer to the problem.
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Conclusion
As the preceding example shows, there now exists software for use in the teaching of

geometry which can change dramatically both how the subject is taught and studied in

secondary schools. Technology exists which enables students to create, measure and

transform geometric objects with ease and, hence, to actually become geometers. They can use

construction programs to explore concepts, build models of problems, come up with

conjectures and develop ideas for proofs. The role of teachers can change from that of

distributor of knowledge to problem solving consultant. What software a teacher uses will

depend on the goals for the course. If the course is to be a traditional one with a lot of

emphasis on classical Euclidian geometry, the Supposer series would fit in very well. If the

course is to take a more algebraic approach and employ geometric transformations, then

Geometry Grapher will work well. If one wants a tool which will use transformations, allow

students to play with problems, and to build dynamic geometric models, the Geometer's

Sketchpad would be an excellent choice. In short, the technology now exists to teach

geometry in new and exciting ways so that students in the coming years will know far more

and will be better problem solvers. To achieve this goal will take a tremendous effort on the

part of the mathematics education community since it will require a massive re-training of

teachers. This re-training will have to focus on both how to use the technology and on how to

make effective use of it in the classroom. This will require teachers to change what they are

teaching and how they teach. The recently published National Council of Teachers of

Mathematics Standards for both curriculum and instruction contain guidelines for this re-

training effort and show how technology can change the teaching and learning of mathematics.

For the Standards to be implemented, everyone in the mathematics education community must

make teacher re-training their highest priority. If we don't, we will never take full advantage of

all that technology has to offer and, as pointed out in the numerous reports which lead to the

development of the Standards, the result could be a mathematically illiterate population.
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Discussion

Uetake:

of Mr. Choate's paper:

Thank you, Mr. Choate for this interesting presentation. Are there comments or

questions?

Sakitani: Once you begin using this software, when you manipulate the figures which are

limited in number, you don't go to an infinite number of possibilities; is this correct?

Choate:

Sakitani:

Choate:

Sakitani:

Choate:

Nohda:

I'm not sure I understand the question. Are you talking about the number of points

on the circle?

In general, as you play, with a number of repetitions, what you can do is necessarily

limited and finite. At some point you must come to adesire to make a proof, and do

you? Has it ever happened with your students?

That's precisely the question that I was addressing; that is, if you do this, you get

that, why? Yes, we talk about reasoning why things happen and, where appropriate,

we do use proof.

Well, even with :apanese students proof is a difficult part in teaching mathematics.

Now, by using this software and after you prove a result, is there any evidence that

proof making becomes easier for the students as a consequence?

Yes and no. First yes. I had two students who took a problem out of a mathematics

magazine...a geometry proof. They made a proof by using the Supposer program

and playing with/constructing the diagram enough times until they understood how to

prove it. Success. I really don't know if, in the long run, students find proofs easier

or prove things better. To be honest I don't care. My goal is to help students to do

mathematics. They now become geometers. And I think that you don't have to prove

everything to do that. May I give one more response? In the problem, I talked about

the triangle and rotating it about its/the midpoints of the sides. Students very quickly

see that that's a proof - that the sum of the angles of a triangle is 180 degrees. I think

that's a good proof.

I am going to give my presentation tomorrow afternoon and will expand on the

relationship between conjecture and proof using the computer.
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Shimizu: I find this software very interesting and fascinating, but I also believe that in many

places, using the compass and straightedge may be necessary. Are you doing that too

with your students?

Choate: As a teacher, if I want to teach students constructions, I use transparencies frequently.

And we do a lot of constructions on the software. For example, in bisecting

(demonstrated) I have students use paper, not compass and ruler...only paper...it is

all done with paper.

Teague: John, it seems to me looking at what you've done that one of the strengths of teaching

this way isn't that students would necessarily be better at proving things, but that they

would be better at making conjectures about what to prove. Do you find in

subsequent courses that this is true?

Choate: Yes. Because we use the same approach with the other. But it's harder in other

subjects to have students come up with conjectures. We do a lot in algebra using

spreadsheet programs and graphing. We have students discover for themselves tests

for finding maxima and minima of a function by looking on a spreadsheet at the table,

looking at a column of differences. And they all know they are looking for where the

differences go from being positive to being negative. They, in a sense, discover that

in class, with no calculus and no limits.

Morimoto: I am wondering whether some of the software is rather difficult for students to use.

Do you set up the situations for the students, and then let them use the moving part,

or do you ask the students to do all of it themsek es?

Choate: I ask the students to do it all on their own. The software I've used the most was the

second one, the QeDmamftraaa. And students learn to use it in twenty minutes,

fairly quickly, and do not have problems with manipulation. The last one, the

,sketchpad, I have not used with students yet. I suspect time will be required for

students to learn it. But teachers that I know who have used it report that not a great

deal of time is required to learn it. In my case, students at my school use Macintoshes

all the time. They word process with Macintoshes, so they understand how to use the

mouse and they understand moving and clicking.
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Becker: As an observation, it just occurred to me, John, that on one occasion in Japan I

observed a very nice open-ended problem solving lesson. The problem was a circle

given with no center and the students were asked to fmd the center in as many

different ways as they could. Of course, the way they approached it was by

sketching things with paper and pencil and paper folding. And they came up with

many different ways to find the center. I was thinking that maybe they could be using

,sketchpad to carry out this sketching and folding; but now the question was raised,

perhaps by Professor Sakitani, about the relationship between these activities and

proof. In fact, that problem was used for over two or three class periods to lay the

basis for a chapter on circles in which a lot of proof was to be done. I am wondering

out loud whether akeighpal may have some application here?

Uetake: Our time is nearly up. There is time for a final comment by Mr. Choate.

Choate: My final comment would be that we've only seen the tip of the iceberg in the use of

software that's available now. If some of you are interested, I'll show you some

other geometry programs that allow you to teach and have students play with ideas

never before possible; in particular, with the notion of iterating linear transformations,

the notion of an eigenvalue, and an eigonvector and what that means in a purely visual

form without any formalism, but the idea of fixed points. I guess my point is that

there is now stuff that we can teach that we never could teach before...very important

ideas, because we now have the technology to do it. I think that, as teachers and

educators, we really have to keep asking ourselves the question what should we be

teaching? I guess my final comment would be, to me the most important question,

what do we need to give people to be citizens of the world? I hope we ask that

question and I hope that we create a mathematics program that allows students to

understand exponential growth and topics like that because that's what ourstudents,

be they Japanese or American, are going to have to understand and deal with in order

to get along in this world. We're going to be living in the information age. Thank

you.

Uetake: Thank you, Mr. Choate. We will now close this final session for the day.

End of Discussion

141 /



ON THE USE OF SOFTWARE IN MATHEMATICS CLASSROOMS IN JAPAN

Yoshishige Sugiyama, Toshiko Kaji and Yoshinori Shimizu

Faculty of Education, Tokyo GakugeiUniversity

Tokyo, Japan

The aim of this paper is to discuss the current state of the use of software in mathematics

classrooms in Japan. For this purpose, we first present a classification of computer use in

Japanese classrooms, according to the aims of use of software and to hardware environments, and

then introduce some lessons we had observed. We ask for permission, however, because the

selection of lessons is biased; these examples may not necessarily represent the typical use of

software in Japanese classrooms. But we think these examples belong to excellent practices in

Japan.
First of all, although Japan has been one of the most prolific countries in the production of

computers, the computer had not comeinto wide use in Japanese schools until quite recently. This

situation had various reasons and background as follows; the Japanese Government had not

financed enough to equip schools with microcomputers; most teachers were short on experience of

computer use and could rotmake use of microcomputers; there were few software on the market,

and it is time-wasting and high-costing to get software of one's own making; teachers, generally

speaking, did not realize the effectiveness of computer-based instruction.

Despite the situation described above, a new tendency has been emerging in recent years;

quite recently, under the circumstances, the importance of computers in the information society is

widely recognized. The Japanese Government has decided to budget the funds to equip schools

with microcomputers and the rate of spread of microcomputer use is increasing. With the

widespread interest in computer use in mathematics classrooms, some good software on the market

is now available and teachers have begun to be interested in the use of software in mathematics

classrooms. So, we anticipate a new situation in which we can see computers utilized by both

teachers and students in many mathematics classrooms.

We are now on the way to the advanced stage. So far, the great majority of classrooms are

equipped with one microcomputer, and few classrooms are equipped with many microcomputers

and not so many Japanese teachers use software in Japan. So it should be noted that, in this paper,

when we say "the current state of the use of software in mathematics classrooms in Japan", it is

more precise to say "the current state of the use of software in mathematics classrooms equipped

with computer(s) in Japan." In this situation with few computers in mathematics classrooms, most

teachers having little experience in using computers, and teachers not being able to utilize software
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fully, computers are to be, used in the Japanese traditional teaching style, or teaching a class as a

whole.

The remainder of this paper deals with a classification of computer use in mathematics

classrooms in Japan, with a focus on the purpose of computer use in classrooms, and introduction

of some examples of lessons or software which will fit into each classification.

1 For Better Understanding (one unit/classroom)
Even if there is only one personal computer in a classroom, it helps students to understand

subject matter and deepen their understanding of mathematics in teaching the class as a whole. It is

more useful than an overhead projector as it is able to represent movement.

If software has been written specifically for mathematics classrooms (i.e., matching

contents to the textbook page-by-page), a teacher can use it without difficulties, even if he or she

has little experience with personal computers. Examples of software are as follows:

Ex.1 The formula of the area of a circle (New CAL)

*"New CAL" is software developed by Tokyo Shoseki Company

Ex.2 The sum of the exterior angles of a convex polygon (New CAL)

Ex.3 Proof of the Pythagorean Theorem (New CAL)

This software seems to be effective in the summative stage of a class activity, but these

examples are also useful for presenting problems (or tasks) and for encouraging discovery of laws

and characteristics in phenomena. It depends on the treatment of software.

2 For Presenting Problems and Problem Situations (one unit/classroom)
We can use a personal computer to present problems and problem situations for the whole

class.

Ex.4 A problem to find a locus of a point (vertex of rectangle) (New CAL. See

Appendix 1.)

The problem is to find a locus and the length of the path of a point, vertex B of a rectangle

ABCD which rolls on a given line without slipping. (The software is also a sample of

mathematical simulation.) Personal computers are used to present this problem situation.

Presented repeatedly, students can form a mental image of the problem and understand visually the

meaning of it.

This software is useful not only for understanding the situation, but also for finding the

locus. In the problem solving activity, the teacher gives suggestions for its solution by presenting

the same display repeatedly and by changing its presentation.

Personal computers are also useful to verify the results after solving the problem. After

finding the locus, students can check their finding by the display.
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Personal computers are used to give other tasks (to find locus of other vertices A and C).

Software like this can give opportunities for even an unskilled teacher to use the personal

computer.
Computers in most Japanese schools, we suppose, are used in whole-class instruction, as

in 1. 2 D Video shows an example of using personal computers in the class as a whole.

Other examples of software are as follows.

Ex.5 A point which is the same distance from 2 points A, B and is on the given

line. (New CAL)

Ex.6 Apply the Midsegment Theorem (New CAL)

(The quadrilateral formed by joining the midpoints of the consecutive sides

of another quadrilateral)

Ex.7 The locus of the midpoint of a chord of a circle which has one end fixed.

(New CAL)

Ex.8 A locus of the midpoint of a segment which has a constant length. (New

CAL)

Ex.9 The area of a figure made from two overlapping two congruent squares.

(New CAL)

3 For presenting materials(data) to find laws and properties in a phenomenon

(one unit (computer) for the teacher and one for each two students)

We can use a personal computer in the class not only to present problems and give

suggestions for solving them, but also to help the students discover laws and characteristics in

phenomena properties by showing various situations or by changing conditions. This is because

the computer can present immediate information on various conditions in the situation. By having

pupils choose conditions or pose conditions, many examples to find ahypothesis can be shown.

Also, many examples to correct the hypothesis or to verify it can be shown immediately. These are

merits of using computers.
Ex.10 Billiard problems ( How many times will the ball hit sides before it reaches

a corner? ) (New CAL)

Ex.11 Inscribed Angle Measure Theorem (New CAL)

The measure of an inscribed angle is a half of the measure ofits intercepted

arc (central angle).

Ex.12 Quadrilaterals inscribed in a circle (New CAL) (grade 9)

If a quadrilateral is inscribed in a circle, then its opposite angles are

supplementary.
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Ex.13 The Theorem of a tangent-chord angle (New CAL) (grade 9)

The measure of a tangent-chord angle is a half of the measure of its

intercepted arc.

4 Simulations and Experiments
(one unit for the teacher and one for every one or two students)

Personal computers can be used for giving simulations of real phenomena and of trials.

Problems requiring many trials for solution and phenomena spanning a large length of time can be

shown quickly on the display.

Ex.14 A ball rolling down a slope (New CAL grade 9)

This is a simulation of a ball rolling down a slope. In an actual situation,

we cannot stop the ball in the process, but on the display we can stop it at

any moment and get data to find a law for the rolling down phenomenon.

Ex.15 Tossing dice

Actual dice-throwing is limited by time, but a computer can shorten the

process.

In the four cases 1-4 above, the computer is used effectively, even though there is only one

unit in the classroom. Of course, personal computers can be used similarly if there is one unit for

many students or if each student has his own. If there are several computes in the classroom, they

can be linked in a network and used as if they were one. Or, as in 3 and 4, they can be used

separately, and thus increase efficiency. In the next case, however, there must be one computer

for each one or two students, or efficiency is lost.

5 Tutorial instruction assisted by computer
As in programmed learning, students can learn mathematics individually through question

and answer. Tutorial instruction seems not to spread in Japanese schools, because we cannot find

good software for this purpose and Japanese teachers seem not to like such a learning style.

6 Exercises of calculations/Exercises of problem solving
A personal computer can be used as a data bank of problems (or tasks). If problems are

ordered according to the levels of difficulties in a computer, the computer can give a student the

same type problem for which he/she made a mistake. Students are thus trained in calculation skill.

This type of utilization of a personal computer can be seen often in Japan.

The next example shows a class in which software for a calculation exercise was used in

teaching a class as a whole.

Ex.16 Practice of exercises of solving simultaneous equations (Sec Appendix 2)
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This class aimed at practice exercises of solving simultaneous equations

after a lesson of solving simple simultaneous equations. In this class each

student used a personal computer, but students in the classroom learned

together with their classmates.

This class began with a review of solving simple simultaneous equations.

Then the students exercised solving simultaneous equations individually using a

personal computer. The teacher monitored students' activities and gave instruction

individually through students' computers. This type would not be popular in

Japanese schools. Japanese teachers prefer whole class activity, and will expect

that computers must be used in this teaching style in Japan.

7 Bringing up computer literacy
Computers are also used for bringing up computer literacy. Students will have been

accustomed to computer use through touching a keyboard. The next examples show classes aimed

to accustom students to the computer in learning mathematics. (See Appendices 3 5 )

Ex.17 Learning color painting (understanding of triangle)

One of the aims of this class was to help children understand that a triangle

is a closed figure. For this purpose, if a child paints a non-closed triangle,

then the painting color will leak out of the triangle on the display. This

experience will give the child recognition that a triangle must be closed. In

this activity, children learned to paint the color at the portion which they

select. This is another aim of this class.

Ex.18 Drawing a regular dodecagon

Through reviewing of drawing a regular triangle, a square, and a regular

pentagon, children found that the sum of the exterior angles is 360. Using

this property, students solved the task to draw a dodecagon.

Ex.19 Drawing an unfolding figure of a triangular prism

After learning to program dot points on the display and to draw straight

lines binding two points which pupils select, students had experience to

draw unfolded figures of a box. The task of this class was to draw an

unfolded figure of a regular triangular prism. In this activity, children must

draw a regular triangle, but this drawing could not be done by appointing

points. To solve this problem, children must become aware of the

drawing method designating direction and distance which they learned

before.
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8 Use of Computers in Solving Problems
In this case, children and students themselves use the computer as a tool to solve problems.

By using the computer, they can create various examples by themselves and discover

characteristics about problems, like 3 and 4.

Students can use one of the powerful functions of a computer and process data quickly, to

solve problems. So real numbers (dirty numbers) can be used in problem situations, and actual life

problems can be used as classroom material.

For this purpose, we must have good problems to solve by using the powerful function of

the computer. As yet, we have few such problems in Japan. So, our task is to develop many

good problems.

Ex.20 Spiro lateral (from "Atarashii sansu" No. 243)

Ex.21 Calculation of a square root of 2 up to 100 places

Ex.22 Computations impossible using a handheld calculator: 999 to the 4th, 8th,

16th, 32nd power and so on.

Ex.23 Finding prime factors of interesting numbers, as follows.

111 = 3 X 37, 1111 = 11 X 101, 11111 = 41 X 271,

12 =2 X 2 X 3, 123=3 X41,1234 = 2 X 617, 12345 =3 XSX 823,
123456 = ?

Ex.24 "Tower of Hanoi" (We saw a class lesson at a junior high school in

Southern Illinois using this problem.)

APPENDIX 1 (Example 4)

The Locus of a Vertex of a Rolling Rectangle Without Slipping on a Given Line
( 7th Grade Mathematics Class )

This is an example of the teacher using personal computers without difficulty to present

problems and problem situations for the whole class by using software available on the market.

The software is mathematics simulation for lower secondary school published by Tokyo Shoseki

company. The sample class is the 7th grade of a public school in Tokyo. The main subject for this

class is to find the path and its length of a vertex of a rectangle ABCD which rolls without slipping

along a given line through one revolution.

First, in the class, personal computers are used to present this problem situation.

(The word "Rolling" is written on the blackboard.)

T : What do you call this?

C(All) : Rolling



T : Today, there is a rectangle. What does rolling mean?

(The teacher draws a line and a vertically standing rectangle on the left hand

at the end of the line and names the vertices A, B, C, D on the blackboard.)

T : Let's roll this rectangle along this line.

T : Look at your display. Let's roll it. Look at it carefully. (display 1 quickly)

T : I cannot mark the vertices A, B, C, D as this rectangle is rolling (on the

display), but here is B. What path do you think the vertex B follows? When the

rectangle is rolling, what path does the vertex follow? This is the line the

rectangle followed as it rolled. Let's roll it, once more. Be careful. Follow the

vertex B. Let's see it, once more (display 1). Once more (display 1). Finally,

find the length of the path. Let's go. (Students are following the vertex B on the

display eagerly.)

By presenting the display repeatedly in such a manner, students can form a mental image of the

problem situation and understand the meaning of it visually. As personal computers canpresent

the movement of figures actively, they can attract students' interest and attention, and motivate

them at the beginning.

This software is also useful for better understanding the problem.

T : Here is the worksheet for you. Draw the path the vertex B follows on it. Read

the problem. The problem is as follows.

The rectangle ABCD (AB=3cm, BC=4cm, AC=5cm) rolls without slipping

along a given line through one revolution.

(1) Draw the path the vertex B follows.

(2) Find the length of the path the vertex B follows.

(3) Find the area of the part surrounded by the locus of the vertex B and a given line.

T : Look carefully at the path. The rectangle rolls slowly (display 1 slowly). Now

vertex B lands again (display stands still). When it rolled like this, what path did

the vertex B follow? Draw the path of the vertex B with the protractor and

ruler.

T : Once more. Once more. When the rectangle went here, where did B go? From

where to where did B go? B went this way. (Display was stopped
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midway through.) Up to here, where did B go? (Display was stopped midway

through.) This is the end. For help, look at this picture (display 2: rolling and

leaving a trace), look at this display, this arrow. B is here, isn't it? Here it is

going up. It goes here. And where does the blue go? It goes here and there.

After that, where is it? Think for yourselves.

Display 2

Then problem solving activity begins. The teacher will be able to give suggestions for its

solution by presenting the same situation repeatedly in the process of problem solving and by

changing its presentation. It is one advantage of computer use over manipulating the real object so

that you can keep previous stages on the display. While the students work on paper, the teacher

draws the rectangles on the blackboard.

( Figure 1)

And a student is asked to put the vertices A, B, C, D of the second rectangle on the blackboard.

Same activity for the other rectangles. Then the teacher asks a student what path this B draws to

this B.

T : Look at your display. (The; teacher points to the display 2.) A yellow rectangle is

rolling as a blue rectangle and goes there. There are so many lines that it looks

confusing. The blue one rolls this way and comes here. Draw the path B moves

along. How did it move? When you've finished, find the length of the path it

traveled.

. An arc of a circle is drawn.

T : Wheic is the center of the circle?

C: It is C.
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Same question for the others. The teacher asks a student to find the length of the

arc of the circle.

T : How long is the radius of this circle?

C: 3 cm

T : How long is the diameter of it?

C: 6cm
T : How long is the circumference of it?

C: 6 7G

T : How much of the circumference of the circle with the diameter of 6cm does this

occupy?

C : A quarter of it.

T : Let's divide 67c by 4. 67c / 4

Same question for the others.

T : Look at your display (display 3). The problem is to find the area of the part

surrounded by the path of the vertex B and a line. So, add the area of these

triangles. (The teacher points to the part on the display 3). O.K., those who

have understood everything so far, think about it. Let's try it. Do you

understand the problem?

Display 3

Also personal computers are used to present similar problems such as to find the loci of the

other vertices A and C.

T : This time we'll focus on vertex A. When it moves, what path does it follow OK?

Draw the path of A. When vertex C moves, what path does it follow? Draw the

path of C. Is everyone with me? Is there anyone who couldn't follow? Look at

this display (display 4). Watch! This is A. OK. Try drawing it.
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Display 4

Personal computers are also useful to verify the results after solving the problem. After

finding the locus, students can check their finding by the display.

Finally, personal computers are used to present the extended problems such as to find the

locus of the vertex of an equilateral triangle, instead of an rectangle.

T : Look at your display (display 5). This time this tdangle rolls around. Let

students think for themselves. This is homework.

A
Display 5

As three students share one computer in the class and they only observe the display

presented by the teacher, the efficiency is the same as one unit per classroom. Software like this

can give an inexperienced teacher opportunities to use the personal computer. If we will think out

the way of use a little more, we will be able to use personal computers not only to present

problems and problem situations, but also to give suggestions to solve them and to verify the result

after solving the problems.

171
152



APPENDIX 2 (Example 16)

Simultaneous Equations ( 8th grade mathematics class)

This example is an eighth grade mathematics class in which personal computers are used as

a data bank of tasks (for the practice of solving simultaneous equations of various types). In this

class, each student used a personal computer, and whole class discussions were used to review the

students' solution methods of simultaneous equations. The teacher monitored students' activities

and gave suggestions individually through the computer network.

Review of Preceding Lesson
Teacher presents the tasks of the previous day on the display to review the solution

methods for simple simultaneous equations.

x +y = 3

xy=7
3x + y = 7

x+y= 3
2x + 3y = 6
x+y. 1

Individual Work of Pupils

Next, new tasks are presented on the display.

1 x+5y=14 2 5x + 3y = 13 3 3x + 7y = 16 4 The Other

x-2y= 0 3x y = 5 4x + Sy = 17

While each pupil engages the task, the teacher monitors their progress and difficulties they

have using the computer network. If needed, the teacher can communicate with each pupil by the

network.

Comparison and Discussion (Comparison and Discussion of proposed solution methods of

simultaneous equations)

The teacher asks pupils to present the solution methods they used, with a focus on the

equation 3. He names some pupils.

T : Explain how to solve the simultaneous equation 3, please.

C : I eliminated x first.

C : I eliminated y first.

summing Up

T : We can use various methods to solve simultaneous equations. But today we have

learned that it's better to select the most efficient method according to the types of

simultaneous equations.
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APPENDIX 3 (Example 17)

"IRONURI" Lesson: Is it a triangle? (1st grade mathematics class)

In elementary schools in Japan, computers are used for bringing up children's computer

literacy. This is a first grade mathematics class, and one of the aims of this class was to help

children understand that a triangle is a closed figure.

Using LOGO WRITER, children tried to color various figures including a triangle which

had a "hole". When children tried to color this " triangle", whole display was painted because of

its "hole". This experience gave them a recognition that a triangle is a closed figure. Through

these activities, children learned how to use some keys to control the "turtle," some commands to

color figures and, more importantly, they enjoyed touching the keyboard.

Introduction by Teacher

The teacher explains "Today's work", coloring various figures on the display. Pupils set

the LOGO WRITER". They have already learned some keys to control the "turtle" and some

0
[First Handout]

commands in LOGO programming as follows: "set color", " fill". The teacher asks pupils how to

color a figure (in order to review and confirm these commands).

The teacher distributes to pupils handouts on which various figures such as circles,

triangles, and squares are drawn. The teacher asks pupils to say the name of these figures,

showing them on the blackboard.
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First Attempt by Pupils
The display of the computer of each group shows the same figures as in the handouts. The

teacher asks pupils to select the figure they prefer and to color it.

T : Do you find your turtle on the display?

Let's move it, by pushing the <F8> key. Then stop your turtle on the figure you

want to color by pushing the <ESC> key. Now, let's color the figure. First

command?

C: Set color

T : Next command?

C: Fill

Pupils are surprised to look at the colored figure. They try to color other figures, using the

same procedure described above.

Discussion about the Happening

Suddenly, pupils in one group (group 8) raise their voice, being surprised, for their display

is colored as a whole despite their "right" procedure.

T : Come together around group 8.

T : Although they tried to color a triangle, it's unsuccessful. They have colored the

whole display. Why did it happen?

C : It protrude!

C : The triangle has a " hole".

T: Is it true?

Second Attempt by Pupils

T : Now, let's try the next task.

[The teacher distributes the next handouts the pupils on which variousfigures, different

from previous one, are drawn. Those figures are also indicated on the display. Pupils try to color

one of the figures on the display. The happening takes place on the display of group 3.]

C (in group 3): Oh, our display is now all in red!

T : What's happened?

C : It protrude!

C : We couldn't color the triangle.

DiagaSiQli
T : Why does it happen?

C : The triangle has a "hole".

T : Is it a triangle?
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C : No, we can't call it a triangle because it has a gap.

T : This figure looks like a triangle, but isn't a triangle. So, let's select a triangle to

color, looking at the display carefully.

Summing Up by Teacher

T : Now, could you color triangles? (Showing a copy of the figures) Here is a figure

we could not color. Although this figure looks like a triangle, this is not a

triangle. We cannot call it a triangle because the sides of it aren't linked.

APPENDIX 4 (Example 18)

Drawing Regular Polygons (5th grade mathematics class)

This example is a fifth grade mathematics class. In this class, to draw a dodecagon, pupils

found a pattern of the LOGO program for drawing an equilateral, triangle, square, and regular

pentagon.

Introduction and Review of Previous Day's Problem

Teacher distributes handouts to pupils.

T : Read the problem on it, please. [He names one pupil.]

C : " Let's draw a regular dodecagon, using the idea to write programs of drawing

regular triangles, squares, and regular pentagons."

T : Okay, it's today's problem.

Pupils engage, first of all, to write programs of regular triangles, squares, and regular

pentagons on the worksheets. Next, they input it by the keyboard to test if these programs work.

Regular triangle

Square

Regular pentagon

repeat 3 [forward 100 right 120]

repeat 4 [forward 50 right 90]

repeat 5 [forward 50 right 72]

The teacher asks pupils to present the program to draw each figure above. And he writes

on the blackboard, what pupils said.
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Finding a Pattern (Whole class discussion)

T Can you find any rule or pattern in these three programs?

C : Triangle needs "repeat 3", square needs "repeat 4", and pentagon needs "repeat

5,,

Thus, the number of times to repeat is equal to the number of sides.

T : Is there any other idea?

C : If we multiply the number after repeat" by the number after right", we always get

360.
[Teacher again writes on the blackboard what he said.]

"Today's PrQblem"

T : So, can you draw any polygons, which have various numbers of sides?

C : Yeah

T : Using that pattern we have just found, let's draw a regular polygon with 12 sides.

T : You'd better write the program on your worksheets first. And then confirm

whether it works or not.

Pupils' Work in Small Groups

Pupils write programs on their worksheets, and then input it to confirm whether their

programs work or not.

The teacher makes suggestion to the pupils who have done the work early, to color the

polygon or to change the length of the edges.

Discussion of Proposed Prow=

T : Okay, is it done already?

C : Yes.

T : Show me your program, please.

[He names one pupil.]

C : Repeat 12 [forward 50 right 30]

T : Okay, did you try it on the computer?

C : Yes, it works.

Repeat 12 [forward 50 right 30]

Pupils' Work in Small Groups

T : Now let's try another polygon. Draw a regular decagon, as a next polygon.

[Pupils begin to work in small groups.]

Summing Up

T : Can you tell the way to write programs of drawing polygons?
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C : In the case of a regular decagon, for example, because the product of the number

after "repeat" and the number after "right" is 360, we will get the angle of the

decagon by dividing 360 by 10.

Practice (Other Polygon) and Applications

After the discussion and the summing-up, the teacher encourages pupils to draw various

figures using the rule. Some pupils draw polygons with 15 sides, 100 sides, and 360 edges. On

other draws a figure like a flower, called "repeated figure".

APPENDIX 5 (Example 19)

Drawing the Development of Prisms ( 6th grade mathematics class)

This is a sixth grade mathematics class. In this class pupils tried to draw a development of

a triangular prism. In the previous day's lesson, they had learned to draw a development of box

using the "Set Position" command. So, they tried to use the same command to draw the equilateral

triangle, which was a bottom of the triangular prism. But they could not draw the equilateral

triangle by using "Set Position" command. To resolve this problem, they had to use the

"Forward" and "Right" commands, which they learned a half year ago.

Introduction by Teacher

T : Today, I will show a solid none of you know. And I want you to draw a

development of it. I wonder if it's pretty difficult.

[He carries a table to the center of the classroom and puts three triangular prisms

on it.]

T : We call this solid a "regular triangular prism".

Can you tell the figure of the top and the bottom of this prism?

C : Regular triangle.

T : Can you draw a development of this prism?

[Teacher distributes handouts, on which a sketch of

regular triangular prism is drawn, to pupils.]

Pupils' Work

First, pupils draw a rough sketch of the development of the

prism on the "planning sheets", and then write a LOGO program.

Looking at the display, they input it. These processes are done in

small groups of three pupils.
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The teacher goes from one pupil to the other, looking at their work.

Then the teacher takes a figure, drawn by one group, and copies it to distribute to all pupils.

T : Now, here is a drawing by Tanaka's group. Cut this figure out of the paper to

confirm it's a correct development of the regular triangular prism. Does it go

well?

[Pupils cut the figure out of the copy and construct the prism.]

C : Oh, it's unsuccessful.

The Problem Emerging

T : Can you explain why it didn't go well?

C : This triangle is not regular. It's an isosceles triangle.

T : Can you draw an equilateral triangle?

C : We can't draw a regular triangle on our sheets, because we can't plot the top point

of the regular triangle.

C : Yes, because of that difficulty, we can't use the "Set Position" command.

T : Ah, you don't know how to do it. Discuss with your group members to resolve

this difficulty.

A Solution of the Problem

T : Is there any good idea?

C : It's better to use the "forward" command instead of the "set position" command.

Using the "Forward" command, we can resolve the difficulty.

[In the previous day's lesson, they had drawn adevelopment of a quadrangular

prism with the "set position" command. This drawing didn't need a "forward"

command at all. So, they could not find a use for the "forward" command.]

T Many of you blindly adhere to the "set position" command used in the preceding

class. It's easy now to write the program for drawing a triangle. The difficulty is

resolved, isn't it?

T : Can you draw an isosceles triangle?

Diacuasigagfk12120C4ILSWLIM
T : Is it done already?

C: Yes

T : I will give you the copies of a figure, drawn by a group.

[Teacher distributes to pupils copies of a figure drawn by a group using

"Forward" command.]

C : Cut it out to confirm whether or not the idea is successful.
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[Pupils cut the figurc out of the copy to construct the prism.]

C : It's successful.

Summing Up by Teacher

T : If we have some trouble in solving a problem, we must consider all of what we

already learned to extricate ourselves out of the trouble.

Have your "head" be flexible so that we can recall quickly everything we learned.
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Discussion

Dugdale:

of Professors Sugiyama, Kaji, and Shimizu's paper:

Thank you, Professor Sugiyama and Professor Kaji and Mr. Shimizu. We now have

time for discussion and we will begin with a question byProfessor Zilliox.

Who develops the ideas and the activities that teachers use in the classroom? Were

they developed by teachers, the Ministry of Education, or commercial vendors? For

example, the activities that we saw the teachers using in their classroom on the

videotape. Were they ideas of teachers or did they come from the outside?

Sugiyama: A commercial software company produced the software, and they are just using it.

The software is made by the company and each teacher is responsible to use it.

Teague:

Sugiyama:

Damarin:

You've listed eight applications or uses of computers in the classroom. What

percentage of use falls into each category?

In this case, mostly t ley use the computer for developing computer literacy in high

schools; secondly, it is used for presenting problems and problem situations, or for

developing better understanding of mathematics in junior high schools and elementary

schools.

I'd like to follow up on the question asked by Joe Zilliox with a particular example.

In the software showing the rolling rectangle or rolling quadrilateral, what part of that

production of software did the teacher do? What I'm trying to get at is what was

provided to the teacher to use as software, and then what did the teacher do with it?

Was the entire demonstration provided or was some software utility package provided

that the teacher then used to create that?

Sugiyama: Well, attached to the software are very simple manuals showing how to use it. But,

in this case, the use of the software was mostly the teacher's idea. Teachers develop

their own teaching method using the software.

Fey: I see in these lessons something that we heard about in the earlier problem solving

discussion yesterday, that a class might have oneproblem that all the students work

on for an entire class period. How do you see that students get mathematical

principles and techniques out of this problem as opposed to learning how to solve that
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problem and how to solve another problem? Where do the mathematical themes come

out, or are they just embodied by the problems?

Kaida: Could you clarify your question?

Fey: Well, it would be more typical in an American classroom for a teacher to show a

mathematical technique applied to several different problems and the idea is that the

focus of the lesson is on the mathematical technique and less on the problem. And

what I see, maybe I'm getting a false impression, is a problem posed, and either it's

an exercise in application of things that students already know or else I don't see how

the underlying mathematical idea comes through in the solution of the problem. Does

that make any more sense to you?

Sugiyama: Well, there are some cases when the teachers teach the solving technique first and

then give problems; but, in general, in this case too, both the teachers and students

attack this new problem together and, in the process of solving the problem and

discussing it, they find out the mathematical topics and problem solving techniques.

Hashimoto: In general, when teachers make use of available software, of course they refer to the

attached manual(s) and the teaching plan for the software; but in most cases, they

develop their own lesson plans and then they use the software instead of follow O lig all

the guidelines.

Ferrio: The activities that we saw in this presentation, are these experimental activities that are

just being developed or are they in use in some classrooms in Japan, or are they even

in wide use in Japan? Fm referring to the specific ones that we saw here?

Sugiyama: It has been said before that the level (frequency) of use of computers is still very low

in Japan. In this case, this is one of the elementary schools in Urawa City which is

recognized to be a very advanced school and they just demonstrated this. Of course,

the software is available commercially.

Detnana: It was hard to tell from the video how much the teacher was directing the lesson and

how much the student was participating in developing the mathematics. Can you say

something about what percentage of the actual flow of the mathematics was being

done by the teacher, and how much of it the student was producing?



Sugiyama: Well, certainly students' participation is much longer than the teacher's explanation. I

would like to give the example in the demonstration.

Demana: Well, the rolling rectangles problem, can you refer to that one?

Sugiyama: Well, in this particular case, probably the first five minutes was spent by the teacher

explaining the problem and showing the demonstration using the computer monitor.

Once the students understood the problem, they then are given about 25 minutes to

work on the computer and try to solve the problem in between time, the teacher can

provide hints or suggestions through the monitor. And then about 20 minutes is

spent in discussion and a summary, and the teacher might give some additional

related problems too.

Becker: An observation I might make, in this connection, is that in many of the problem

solving lessons we observed in Japanese classrooms, during the 20-25 minutes when

the students were working on the problem, the teacher was very active, but not in

speaking. The teacher walked around and watched what the students were doing and

identified the things that he or she would want toemphasize later in the lesson, to

bring to the attention of all the students for discussion. So, that kind of purposeful

scanning of student work was a very important part of the lesson.

Fey: Related to this time flow in lessons, one of the things that we've found in computer

lab lessons is that students may progress at very different paces as they try to solve

the problem. Some students will solve problems very quickly and others won't get

through the material. Time management is a very hard problem for American teachers

in these kinds of open lessons and I wonder what techniques you use to avoid that

problem.

Sugiyama: In the case of solving simultaneous equations, you saw it in the VTR video. Well,

this is a special case because the teacher gave a set of many problems so that,

within a given time period, the students could go at their own pace and fast students

can do a lot more than slow ones. In general, how to manage students and individual

progress within the whole class situation is a big problem and the Japanese are doing

research on this now. But, in many cases the teacher prepares some additional

challenging problems for those who advance more quickly.
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Choate: A question about the rolling rectangle problem. What did the computer add to that

lesson? As I watched the lesson I saw a lot of duplication of diagrams and drawings

and I'm not really clear on why the computer was used in that lesson?

Sugiyama: Of course, it may possible to teach this material without using software. However,

some students cannot visualize the process of the problem with only verbal

expressions and that's why the software is used. Also, the demonstration shows not

only the repetition of the same thing, but each time it's different. Some show the

whole movement, while some show each process separately, and some show the

trace or locus of the point (demonstration given). So, the first one is the locus of

point A and the second one for point B...different.

Choate: Can I, as this is going on, ask a question? Is this software pre- packaged? Does the

teacher come in and make that rectangle and write the program so that the teacher can

make the rectangle roll, or is this a pre-packaged lesson?

Sugiyama: This is all pre-packaged. The teacher cannot change or do anything about the

software as a whole.

Choate: So if I was to ask what would happen if the rectangle rolled around the circle, 1 could

not use this software?

Sugiyama: In this case, yot' cannot make any changes or additions to the software.

J. Wilson: Following up on Jon's question, this is a problem that I've used in my problem

solving workshops for teachers and with students for several years. We work it with

a rectangle and a sheet of paper and everybody gets it down on their desk - and they

do some rolling. I think Jon's question is, why not have kids doing these things with

their hands? What is added by the software for this particular problem? Jon wants to

change the problem. I've had kids say, what if we rolled it over to the corner and

now we roll it up the side and we get a different pattern. There's certainly freedom in

doing that. So, I think Jon's question and mine is, given an alternative way of doing

this, where we would have children doing things with their hands and constructing

these things in a realistic way, what does the software add?
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Sugiyama: Well, just one example is shown here and, in this case, certainly the software

problem is very simple and limited, but that means that the teacher needs no

preparation at all - the teacher can just come and use it and then the teacher can give

additional problems; and then, later, students can do the other kind of problem as you

have suggested. In contrast, there is the software shown yesterday, the Geometer's

Sketchpad. Stuff like that requires the teacher to spend a lot of time in preparing it.

Of course, that kind of software has been developed in Japan too, but this, today, just

shows a very simple case.

Wilson or My question is not necessarily whether or not I wouldn't use that software, but I

Choate: am looking at the problem and I think there is , well, I have this orientation of several

others here that the computer is a tool andwhen/if this problem is approached with

the computer as a tool, for the kids to explore and look at the problem, then I could

see that I would like to try some other things with it. If the software becomes a way

of presenting the problem to students and it becomes essentially a way of delivering

the problem, then I have less concern for it.

Sawada: In Japan there are many textbook and software companies. But, in general, teachers

do not follow exactly what the textbook says or go along with the textbook and,

therefore, most of the software is aligned with the textbook and these are the ones the

teachers prefer to use. In this particular case, Professor Sugiyama is related to this

company and making this software and maybe that's why he chose it; but there are

many other softwares available which demonstrate a triangle and other stuff as well.

Becker: I have a couple comments. I think that the important thing here is the context in

which the software is being used We're talking about a lesson in mathematics that

has specific objectives. The teacher knows what he or she wants to accomplish in the

lesson. And the software has a role to play in achieving the objectives by the end of

that class period or whatever the instructional period of time may be. That relates to

Professor Fey's question about classroom management, which I think is exceedingly

important. Also, as Jon Choate mentioned, maybe he would want to see this

rectangle rolling around a circle. Well, that may be a very important question and that

may be very important to investigate, but it also might be very important not to do it

right now. Maybe that would be addressed in slightly different circumstances or at a

different time.
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Miwa: Well, let's think back to Professor Sugiyama's presentation during the whole class

presentation and then the computer is used to supplement that. On the other hand,

you can make the computer a priority and then in order to utilize the computer you

may be able to change your teaching method or strategy. But maybe I disagree with

both of them and feel there should be new development of how to coordinate the two

opposing strategies. I would like to know Professor Sugiyama's opinion about this,

though it is not in his presentation.

Sugiyama: The merit of the whole-class teaching is two-fold: (1) it is very effective to teach

many students all at one time, and (2) the students can share their ideas and they can

find out what they couldn't find out by themselves. And that's the reason why the

whole-class situation is very popular in Japan. Well, now there is the individualized

approach to the teaching and learning which is also very important, and that's where

the computer is expected to come in and to supplement that idea. But, of course,

there is a possibility of developing another way of teaching, but right now I am not

sure of what it is.

Dugdale: Do you want to follow up, Professor Miwa?

Miwa: Well, maybe some other time I would like to get the opinions from the American side

on how and what they think about this. For certainly, by introducing compute

technology the teaching pattern may change and there may be great potential, and I

would like to know other opinions as well.

Nohda: This afternoon in my presentation I am going to talk about the 20-30-70 problem and

why the whole-class teaching is the major teaching technique in Japan. However,

because of this we also have problems. For instance, in the upper grades of

elementary school there is already twenty to thirty percent of the students who drop

out or fail. in the case of the junior high school, it is almost fifty percent. When it

comes to high school, seventy percent fail. And, therefore, while they see this

problem with the whole-class teaching method, the introduction of computer

technology into teaching may change or ',reprove the situation.

Dugda le: One moment. For clarification of what has just been discussed, could Professor

Miwa speak?
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Miwa.: Even though Professor Nohda used the word "drop out," it doesn't mean to drop out

in the English sense. This was discussed at the last Seminar in 1986 also; at that time

the expression 7-5-3 was introduced which means that, by the end of the elementary

school level, 70% of the students understood the math or what they were learning.

That means 30% did not quite understand. And at the end of junior high school, 50%

had good understanding of the math. And at the end of the high school, 30%. That's

how the 7-5-3 came about. So, the 7-5-3 doesn't mean that they have failed and

checked out of school or even have failed the course. They just didn't understand

everything.

Dugdale: I'm sorry we are at the end of our time. Thank you again to Professor Sugiyama, to

Professor Kaji, and to Mr. Shimizu.

End of Discussion
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INFUSING THE K -12 CURRICULUM WITH GRAPHING

AND PROBLEM SOLVING

Frank Demana Bert Waits Hal Schoen

Ohio State University Ohio State University University of Iowa

The graphical and numerical representation of functions is a milestone in the history of

mathematics that paved the way for such important developments as calculus, a topic receiving

increased attention in recent mathematics curriculum recommendations (e.g., Curriculum and

Evaluation Standards for School Mathematics, [NCTM], 1989), and an area in which curriculum

and instruction could soon be revolutionized by tr -.: use of ever-improving graphing utilities- -

computer graphing software and graphing calculators. Graphing utilities have started to change the

role of graphing in the school curriculum and in mathematics itself and corresponding changes in

mathematical content from pre-algebra through calculus. Graphs of both functions and relations

can now be obtained quickly with the use of technology such as the 11-81 graphing calculator used

in this paper. Graphing can be used to infuse the curriculum with problem solving and to establish

function as a major theme of the curriculum.

Graphing should be started early in the mathematics curriculum and should be used to solve

problems graphically. Significance and meaning can be established about graphing by using

graphs to represent problem situations.

Prior to making graphs, tables can be constructed and used to explore and investigate

problem situations numerically. The tables can be used to help students develop understanding

about arithmetic processes, to foreshadow the study of algebra, and to solve problems numerically.

Later the tables will be used to make graphs. This approach is illustrated in the following example.

Tables
Example 1. Shears Department Store is having a 20%-off sale.

(a) Complete the following table:

Original Price ($) Sale Price ($)

10

20

30

40

Table I. Sale Problem in Tabular Form
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(b) What is the original price of a coat whose sale price is $30.40?

There are many benefits to using problems as a vehicle to develop understanding

about mathematical concepts and to using a numerical approach to analyze problems

(e.g., Demana & Leitzel, 1988). Using problems to introduce mathematical ideas helps

students learn to value mathematicsan important goal of the NCTM Standards. This

approach helps integrate problem solving into the study of mathematics and establishes

problem solving as a major focus of mathematics. Exploring problems numerically builds

understanding about problem situations that can be exploited when these problems are

returned to in algebra. With the aid of calculators, students can do numerous computations

in a given problem situation quickly. Repeated calculator-based computation in a given

problem situation provides the necessary experience that allows students to establish

understanding about arithmetic processes.

Additionally, the frequent use of tables helps establish function as a major theme of

mathematics. Each table constructed gives students a concrete example of a function

presented numerically. These tables can be used to construct graphs to represent functions

geometrically and can be used to write expressions that represent functions algebraically

(eg., see Comstock & Demana, 1987).

Problem Solving Numerically

Students can use the completed lines in Table 1 of Example 1 to get started on the

solution to (b) of the example. The completed lines of Table 4 can be used to estimate that

the answer to (b) is between $30 and $40 and a little closer to $40. Then, a guess-and-

check approach can be used to determine that $38 is the answer to (b). Besides developing

understanding about arithmetic processes, this rich arithmetic activity gives meaning to and

understanding about finding solutions to such problems. Students can be guided to see that

solving this problem numerically amounts to finding a line of the table with an entry in the

second column equal to 30.40. This activity can be exploited later when students return to

such problems and solve them graphically and algebraically.

The Role of Paper. Pencil, and Point Plotting

Much research is needed about how much point plotting by hand and with the aid of

a calculator is necessary before students are turned loose with modern computer-based

graphing tools such as a graphing calculator. Considerable point plotting is certainly

necessary in the early grades, but if used exclusively, it may well interfere with students'
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understanding of the continuous nature of most graphs.

The Impact of the Graphing Calculator on the Curriculum

A major goal of the Grades 9 through 12 mathematics curriculum is for students to

achieve in-depth understanding about important classes of functions. Prior to the study of

calculus, this understanding would need to come from exploring numerous graphs quickly

with the aid of technology. Teachers can guide this exploration so that students will

actually conjecture statements that are true. In this way, students feel ownership in the

mathematics. Teachers need to provide a few pitfalls to be sure that students use care when

making conjectures (Demana & Waits, 1988a; Dion, 1990). However, this is not to say

that students should be inundated with pathological examples.

A complete graph of a function y = f(x) is a graph that shows all its important

behavior (Demana & Waits, 1990b). What constitutes the important behavior of a function

depends on where the student is in the mathematicscurriculum. Important behavior of a

function includes its y-intercept, zeros, relative extrema, and end behavior. In algebra and

precalculus, teachers will have to tell students that a cubic polynomial function has zero or

two relative extrema. And then students can find the coordinates of such extrema using

graphical methods. In calculus, we would expect students to know why there are always

exactly zero or two relative extrema for a cubic polynomial. Finding points of inflection

would also probably be reserved for calculus.

The end behavior of y = f(x) is its behavior for x large in absolute value. For

example, the end behavior of y = ax2 + bx + c (a 0) is f(x)..4...0 as lx140,.00 if a > 0, and

f(x}i.. as lx1-110. 00 if a < O. Notice that the end behavior of y = ax2 + bx + c and y =

ax2 are the same because the values of ax2 + bx + c are dominated by the values of ax2. In

other words, y = ax2 gives a model of the end behavior of y = ax2 + bx + c. We say that y

= ax2 is an end behavior model of y = ax2 + bx + c. More precisely, g 0) is an end

behavior model of f if and only if f Ig 30-1 as lx1 -411"00. The end behavior model

concept is also very powerful visually: for example, the graphs of y = 2x2 and

y = 2x2 + 5x 7 in the viewing window [-1,000, 1,000] by [- 1,000,000, 500,000], that

is, in the rectangular region of the place given by -1,000 5 x 5 1,000 and

-1,000,000 5 y 5 500,000, are visually identical. This is convincing evidence that the

behavior of y = 2x2 + 5x 7 is essentially the behavior of the simpler function y = 2x2

for large values of Ix'.
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We would expect that prior to the study of calculus students will, through the power

of visualization, have in-depth understanding about polynomial functions, radical

functions, rational functions, exponential and logarithmic functions, trigonometric

functions, conics (relations), and polar and parametric equations. The class of rational

functions, for example, provides important foreshadowing activity for the later study of

calculus as illustrated in Example 2.

Example./ Determine a complete graph of f(x) = x4 x3 6x2 + 5
x2 x 6

Figure 1 gives the graph of f in the viewing rectangle [-7, 7] by [-10, 30]. Notice

that this graph illustrates the end behavior off because it suggests that f(x)-11"" 0o as

Ix' moo. Some beginning students will need more detail near x = 2 and x = 3 to be sure

that f has vertical asymptotes at x = 2 and x = 3. The graph off in Figure 2 gives strong

evidence that f has three local extrema in 2 < x < 3. Notice that Figure 1 shows f has two

other relative extrema outside this interval for a total of five extrema. We can zoom-in on

the graph off in 2 < x < 1 to see that the graph crosses the x-axis twice in this interval.

Thus, f has four real zeros. Prior to the study of calculus, teachers will need to guide

students to discover that the graphs in Figures 1 and 2, together with more detail around

x = 2 and x = 3, if needed, constitute a complete graph of f. This example illustrates that

more than one graph is often necessary to show all of the important behavior of a function.

I 4 I I III

Figure 1. The graph of Figure 2. The graph of

f(x) = x4 - x3 - 6x2 + 5 f(x) = x4 - x3 - 6x2 + 5
x .7--77E

in [-7, 7] by [-10, 30].

x2 - x - 6

in [-2, 3] by [ -5, 5].
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Students can use algebraic manipulation to help understand the graph of f. Using

long division and factoring, f can be rewritten as follows:

f(x) = x4 x3 6x2 + 5 = x2 +
x2 - x - 6 (x+2)(x-3) .

In this form, students become convinced that the graph of f looks like the graph of y = x2

away from x = 2 and x = 3 and "blows up" near x = 2 and x = 3, as suggested by Figure

1. This form also suggests that y = x2 is an end behavior model of f, because it is easy to

see that f /x2-0,- 1 as lx1-10-00. An end behavior model off can also be discovered

graphically using zoom out, that is, viewing the graph off in large viewing rectangles.

The graphs of f and y = x2 will appear to be nearly identical in the [-100, 100] by

[-10,000, 10,000] viewing rectangle.
In calculus, students can compute the derivative off to see that it is also a rational

function with the polynomial of degree 5 as the numerator. Since a polynomial of degree 5

has at most 5 real zeros, the calculus student can now conclude that, based on the graph of

f in Figure 1, f has exactly five relative extrema. In calculus, conjectures about the

behavior of functions made in precalculus can be proven. This is a modern role of

calculus.

Results from Recent Research

Rich (1990) found that students who are taught precalculus using a graphing

calculator better understand the connections between an algebraic representation and its

graph and that they view graphs more globally, in that they understand the importance of a

function's domain, the intervals where it increases and decreases, its asymptotic behavior,

and its end behavior. Browning (1988) found that high school precalculus students who

used graphing calculators for one year exhibited a significantly increased ability to deal with

graphing at the more advanced Van Hiele levels of analysis and ordering. Farrell (1989)

also observed that precalculus students who were taught the use of graphing calculators

demonstrated greater facility with higher-order thinking skills than traditional students.

Further, Dunham (1990) observed that in college algebra classes requiring graphing

calculators, gender-related differences in performance on graphing items were eliminated,

while pretest performance on graphing items indicated that females performed at a lower

level than males.
Because graphs are easily obtained, it is reasonable to emphasize that finding all the

real solutions of f(x) = 0 is the same as finding all the x-intercepts of the graph of f.
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Limiting ourselves to algebraic techniques seriously restricts the types of equations students

can solve. In the conventional curriculum, students solve linear equations, quadratic

equations, easily factored contrived higher-order polynomial equations, and other contrived

equations whose form is special. However, using computer graphing, students can easily

solve very complex equations, even equations that do not admit an algebraic solution. The

graphing method is illustrated in the following example. We could easily handle more

complicated examples the same way.

Example 3. Solve x3 + 2x = 1.

It can be shown that the graph of f(x) = x3 + 2x 1 in Figure 3 is complete. Thus,

the equation has one real solution. Because the scale marks are one unit apart in Figure 3,

the one real solution lies between 0 and 1 and is about 0.5. We can create a decreasing

nested sequence of viewing rectangles that converge to the x-intercept and that allows us to

determine the x-intercept with accuracy within the limits of the precision of the machine in

use.

Figure 3. The graph of f(x) = x3 + 2x - 1 in [-4, 4] by [-5, 5].

The scale marks on the horizontal axis in Figure 4 are 0.1 apart. This allows us to

read the solution to the equation as 0.45 with error of at most 0.1, the distance between the

horizontal scale marks. Similarly, we can read the solution as 0.454 with error of at most

0.01 from Figure 5, and as 0.4534 with error of at most 0.001 from Figure 6.

174 192



Figure 4.

The graph of

f(x) = x3 + 2x 1

in [0, 1] by

[ -0,5, 0.5].

Figure 5. Figure 6.

The graph of The graph of

f(x) -- x3 + 2x 1 f(x) = x3 + 2x 1

in [0.4, 0.5] in [0.45, 0.46]

by [-0.1, 0.1]. by [ -0.01, 0.01].

The process illustrated by Figures 4-6 is called zoom-in. Modern graphing

calculators, such as the TI-81, have automatic zoom-in as a feature. However, the careful

selection of viewing rectangles suggested by Figures 4-6 is a good beginning activity for

students using graphing utilities. This process can be continued until we determine the

solution of the equation with desired accuracy within the limits of machine precision.

The situation for solving inequalities is very similar to solving equations. The

algebraic techniques are limited, causing a corresponding restriction on the types of

inequalities that can be solved. Again, solving inequalities graphically allows a wider

variety of complicated inequalities to be solved: for example, to solve x3 + 2x < 1 (or,

x3 + 2x 1 < 0), we need to determine the values of x for which the graph of

f(x) = x3 + 2x 1 lies below the x-axis. Figure 6 permits us to read the solution to the

inequality as (-0., 0.4534) with an error of at most 0.001.

Technology allows algebra students to solve equations such as

500 = x(20 2x)(30 2x) to find the side length of the squares that must be cut from each

corner of a 20 cm by 30 cm piece of cardboard in order to form a box with no top that has

volume 500 cubic cm. These are equations that we could never dream of asking students in

school mathematics to solve without graphing calculators. Solutions are now possible

because of the graphical techniques available with today's technology.
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The Modern Role of Algebraic Manipulation

Much of the present K 12 curriculum consists of mindless arithmetic drill and

algebraic manipulative practice. The Standards call for this type of activity to be

substantially reduced and replaced by activities designed to foster higher-order thinking

skills. This is not to say that arithmetic and algebraic manipulation should be completely

removed from the curriculum. In light of technology, we now need to ask ourselves why

we do these things and we must try to give students reasons (Demana & Waits, 1988b).

Students will view these skills as important if they grow out of applications or out of

situations where other mathematical understanding is obtained. In other words, these rote

activities should not be the focus of the majority of lessons. Rather, they need to be used

in more interesting activities.

Graphing receives very little attention in the current curriculum. Graphing utilities are

and will continue to have a profound effect on the upper curriculum. Students need to learn

how to use graphing as a problem-solving tool. The curriculum needs to be infused with

realistic problems to help all students learn to value mathematics. The use of graphing

calculators will help make the vision of the new NCTM Standards a reality.

REFERENCES

Browning, C. (1988). Characterizing l f functions and their

graphs. Unpublished doctoral dissertation, The Ohio State University, Columbus,

Ohio.

Comstock, M., & Demana, F. (1987 February). The calculator is a problem solving

concept developer. The Arithmetic Teacher, 34 (6), 48-51.

Demana, F., & Leitzel, J. (1988). Establishing fundamental concepts through numerical

problem solving. In A. F. Crawford & A. P. Shulte (Eds.), The ideas of algebra,

K-12 1988 Yearbook (pp. 61-68). Reston, VA: National Council of Teachers of

Mathematics.

Demana, F., & Waits, B.K. (1988a). Pitfalls in graphical computation, or why a single

graph isn't enough. The College Mathematics Journal, 19 (2), 177-183.

Demana, F., & Waits, B. K. (1988b). Manipulative algebra--the culprit or the scapegoat?

The Mathematics Teacher, 81 (5), 332-334.

I. 4
176



Demana, F., & Waits, B. K. (1990a). Enhancing mathematics teaching and learning

through technology. In T. J. Cooney and C. R. Hirsch (Eds.), Teaching and

ktamingmatimmaticainiku2201,Lz.a122Diaarkok, 212 - 222. Reston,

VA: National Council of Teachers of Mathematics.

Demana, F., & Waits, B. K. (1990b). Precalculus mathematics. a graphing approach.

Reading, MA: Addison-Wesley Publishing Co.

Demana, F., & Waits, B. K., & Schoen, H. (1992). Graphing in the K-12 Curriculum:

The Impact of the Graphing Calculator. In T. A. Romberg, E. Fennema, and T. P.

Carpenter (Eds.), Integrating Research on the Graphical Representation of

Functions, (tentative title). Hillsdale, NJ: Lawrence Erlbaum Associates.

Dion, G. (1990). The graphics calculator: a tool for critical thinking. The Mathematics

Teacher, 83 (7), 564-571.

Dunham, P. (1990). #.911 Ai -1 .14 I l4f1 .i US -11.1 *-4

precjlculus: gender-related differences. Unpublished doctoral dissertation, The

Ohio State University, Columbus, Ohio.

Farrell, A. (1989). Teaching and learning behaviors in technology-oriented precalculus

classrooms. Unpublished doctoral dissertation, The Ohio State University,

Columbus, Ohio.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation

standards for school mathematics. Reston, VA: NCTM.

Rich, B. S. (1990). Oil I. 11. -.11 1'

functions concepts in precalculus mathematics. Unpublished doctoral dissertation,

University of Iowa, Iowa City, Iowa.

Schoenfeld, A.H. (in press). Mathematics, technology, and higher order thinking. In

R.S. Nickerson & P.P. Zodhiates (Eds.), Technology and education in 2020

(tentative title). Hillsdale, NJ: Lawrence Erlbaum Associates.

1c15

177



Discussion of Professor Demana's paper

Hashimoto: Thank you very much for a very nice presentation. We shall now proceed with the

discussion. Are there any questions and comments?

Sawada: Yes, I have two questions concerning the use of technology: (1) If the student can do

the characterization but when it comes to graphing they tend to get lousy and cannot,

for example, distinguish between a straight line and a curved line, how do you treat

these things? (2) Are the symbols used in the regular math and math with technology

somewhat different and how do you treat them?

Demana: In first case the reason I use that rational function is because our students prefer to

draw rational functions by hand. They find them very hard to do on the machine and

so our students do long division, divide the denominator into the numerator, get the

quotient which is this end behavior idea. They actually draw that and then erase

around, as they say "erase around the bad points," and complete the graph that way

so that, in fact, we get more ordinary by hand drawing than we ever did before. We

take building blocks. We start with x2, we make sure they can very carefully shift up

and down, left and right, stretch, and we go through building blocks to do that with

every polynomial one over x, e to the x, and log x, so that when we get to the

transendental functions they are, in fact, done. So, that's question 1. The second

question was about confusing linear and curve. In fact, when I went into a fourth

year course which meant they had algebra I, algebra II, and geometry, they, in fact,

could not graph linear and quadratic functions. And that's why we had to really start

over with that. Now our students understand classes of functions. When they look

at a polynomial of degree 3, they know what the possibilities are. When they look at

a polynomial of degree 4, they know what the possibilities are. They even know

how to graph, as I mentioned, these rational functions...get a complete graph. Let

me illustrate that with a hand drawing so you can see what I mean. If they did the

division so that it became say f (x) = x2 + 1 over x-2, here's what our kids do.

Well, I'm going to cheat a little because I don't like to get this stuff on my hand, but

they actually draw x2 . They use pencil and then they erase. But I'm going to erase
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at the same time. Okay? And then they come in and fix it up...like that. Now, our

precalculus students think about rational functions as polynomials with a few bad

places and our calculus kids never had that kind of understanding before.

Sawada: Well, when you draw the curve manually you can draw a nice smooth curve, but

when it appears on the calculator screen, the line tends to be quite rough and broken.

How do you explain to students about that? Also, the symbolic expressions you use

may not be exactly the same as those you use manually; for example, x2 looks like

xA2 and you have to use different symbols. So, what's the advantage or the

difference? Also are you going to do the same thing with a lower level or lower grade

students?

Demana: The answer is yes. We're doing it in algebra. We're actually doing some stuff in

middle school, graphing the very first example (demonstration on OHP and screen).

We talk about the roughness. We talk to students about how the computer (that's

what this calculator really is) is actually graphing, There is a mode on here where I

can forget about the smoothing function and see what it's using. So we can talk

about what the machine is really doing. Let me take some easy examples here. Fl

get rid of the hard one. I'mjust going to press in x2. Incidentally, we can get two

exponents to your right and after that it's carrot like a computer, and it does

understand juxtaposition-writing next to each other. 2x makes sense, you don't need

2*x. But now when I go ahead and graph this, yes, it's a little rough, there is a mode

in here which allows me to turn off this feature and I can see what the machine is

doing. It's taking those points and I can talk about it's trying to draw a smooth

curve. I can even tell it, don't use as many. I can go in here and I can say, don't use

every pixtel, use every other one, for example, and I'll get fewer. And when I

complete that it'll look rougher than when I fill it in. So we use it as an opportunity

to actually talk about how it's doing it so that, in fact, you don't get misled. See,

now that one's a little rougher than the other one and I can make it rougher yet
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depending on what I choose as the resolution. So you do have to be careful, and we

just make kids understand what the graph really looks like. This is only a tool in

helping you to understand.

Sawada: As a math educator are you requesting the manufacturing companies to make a finer

machine so that the it can draw a much smoother graph or curve?

Demana: Not really. I want it to have more features ultimately. To do more things. But I

don't want it to be so smart that the student has nothing to do. I use the pictures as a

way of creating student questions, promote discussion in the classroom and then we

talk about the mathematics that's always been there. We use these graphs for

example so that when we come back to it in calculus, we can talk about how do you

find where it has relative extrema. Well, we know the derivative should be zero and

we can actually pop graphs up at the same time. I'm not concerned with it being

correct completely. I get a lot of mileage if it's not always correct, or as smooth as

possible.

Sawada: I just wanted you to know that one calculator manufacturing company in Japan

manufactures a calculator similar to yours; while it was not used very widely, the

math teachers told them it was not accurate enough (the graphs were not smooth and

precise) and they would not use it. But when this same calculator was available in the

U.S., teachers thought well of it.

Demana: Yes. We, in fact, used Casios for a full year and it was the teachers and students

using Casios that prompted the features of this particular machine. This has built into

it the things the teachers and students didn't like about the Casio, or built out of the

old part of it.

Morimoto: Japanese math teachers still feel this resolution is too rough, it's not exact enough yet.
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Are you satisfied with this level of resolution or, if it is financially possible, are you

thinking of switching to the more refined resolution calculator.

Demana: I would take more resolution, but with the understanding that the price has to be low.

These cost less than $80 in the U.S. We are able to put them in every kid's hand.

We tell parents, for example, they cost less than a pair of good tennis shoes. And if

you're going to give me a $1000 machine with lots of power in my hand, I'm not

going to be able to use it. So I'll take the best I can get for the money, but the money

is a driver. No matter what you use, no machine can be exact. You build it as good

as you want and then I'll ask you to graph sine nx and I'll make n big enough that it

will scuz up your machine. You can't make it do that, I mean, you can't ask

machines to do something that's impossible to do. But you can ask students to

understand what resolution means and that's important.

Dugdale: Similar to the question of resolution and smoothness, I am not so bothered by the

lack of resolution, but I am more concerned by the behavior of the graph around

discontinuities. I am used to software that recognizes a discontinuity, does not plot

the asymptote as part of the graph, and shows the appropriate behavior of the graph

around the asymptote. That's different from what Frank is showing, but Frank is

using the lack of accuracy around a discontinuity as an opportunity for students to do

some thinking, and it sounds to me like that's one of Frank's examples of not

wanting the software so smart that the student has nothing to do. I would like your

comment on that, and correct me, Frank, if I've misinterpreted you. I am also

interested in the Japanese perspective on whether it is the general, overall smoothness

of the graph that you find a problem or whether it is the critical points in a graph

where it does not plot correctly because of the resolution.

Hashimoto: Does anyone in Japanese delegation have acomment? Professor Miwa?
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Miwa: This discussion has come up because Sawada commented that the Casio calculator

manufacturer produced a calculator with low resolution, below Japanese math

teachers' standards. If that is clarified, probably that would answer the question.

So, perhaps Sawada might respond to the question.

Sawada: First of all, certainly there is the problem of the continuity of the curve, the

smoothness and also the relationship between the curved line and an asymptote. This

is a very big problem and it's been asked on examinations so that, in the Japanese

high school, they're dealing a lot with this. And that's why this smoothness came

into question. Now as far as the curriculum and calculator are concerned, the present

curriculum is made by Monbusho (the Ministry of Education) and does not include

calculator use and, therefore, there's no room to use them. No textbooks include

them either. I'm not talking about the new syllabus which will be in effect in 1994,

but the present one that is being used. So, in Japan, of course, the graphing

calculator is available but still teachers are not using them enough. For example,

most calculators, unlike what was shown today, don't have the zooming function or

show the intersection of two lines very clearly and you cannot really see it. And

those are the reasons why Japanese math teachers do not adopt calculators today for

their teaching.

Hashimoto: I hope the U.S. delegation can understand the Japanese situation. Are there other

comments? Mr. lida.

In the American system of math education which has the priority - the teacher's

explanation, the lesson/lecture or student participation in the learning activity? Also,

is there any opportunity for the students to express their own opinions or present their

own ideas? In this case, do teachers fully understand what the students are thinking?

For instance, in Japan and in general, teachers grasp students' way(s) of thinking

very clearly because they let them introduce their own ideas or opinions in class; but
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here in the States, if you let the students talk about their own opinions, do teachers

fully understand what they are talking about?

Demana: I would say that is part of the reason for the strong use of technology in our system,

to turn our classrooms away from a demo, that is the teacher presenting... students

dutifully sitting and listening, without doing anything. Technology does get the

student involved. Now it's been hard for teachers because they have been used to

having a classroom under their control, and feel threatened when asked questions

they can't answer. And you saw yesterday questions that can come alive that the best

mathematician around is not able to answer from these visual experiences. Now,

once our teachers get past that fear, and are partners with the students, a guider and

explorer on an adventure, then our students are really excited about it because they

find out mathematics is not dead. There are lots of interesting questions. At Ohio

State University we have been training teachers in one-week institutes since 1988 in

the use of this calculator and that's been one of the key issues, but we have

unbelievable interest in this in our country, as I said. We will have, by the end of the

summer, put through 1500 teachers in one-week institutes around the country in

classroom teaching this way and they report back that although it's hard the first year,

it is a good way to operate with shared experience when they get in the classroom.

They're working together, truly working together.

Uetake: With this calculator made by Texas Instruments, can you useparametric equations

and polar coordinates?

Demana: Do you want me to do it now? Sure.

Demana: Okay. I'll do them both at once. Is that what you want (demonstration)? Or do you

just want an answer to a question?
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Uetake: Yes, please show us.

Demana: How about short 0 mathematics, how's that (demonstration)? Here's short 0

mathematics. I'm going to put it from function to parametric and now I have 3, ahhh.

Fm going to leave what I've got in there cause that's what I was going to do except

I'll come down here and change this to sine. coops. that isn't what I want. The first

one parameterizes the unit circle. It's going to have center at 10, the second one

parameterizes a function sin x. okay. Now I'm going to fix the range where you can

see what that is, that's 0 to 27r. The t-step here you do and control the resolution in

parametrics, so you can close up some of those other issues you want, but still you're

limited by the number of pixels on the screen. I only need here about negative, oh,

let's make it 4 and let me only go from negative 2 to 2 and let me do one other thing.

Let me graph them both at the same time. You may not like that - that thing doesn't

quite look like a circle but I can fix that quickly for you but if you look at this, this is

the sine function unwrapped, this is the wrapping function. If I use the trace and go

over here I'm on the unit circle where the y coordinate is the sine and I can jump to

the others to sec what's happening. As I go around I can see the way in which the

sine has been graphed. So I've unwrapped the sine function but the nice thing is you

don't always look at these others. Here's an unwrapping of the tangent function.

Now, what Sharon asked a minute ago which I didn't get to (want to do a square), I

can square this up so that it makes a circle look like a circle. Sharon asked do I care

about those singularities. This is where I want to go in and switch to dot mode. I

don't want it too smart. I get some mileage out of kids zooming in on singularities.

There's the tangent. I can unwrap all the functions. That shows you how to do this

but, more than that, we actually can simulate motion. We can do real problems. One

of the neatest problems that our students get into is hitting a baseball and deciding

whether it's going to be a homerun or not. And you can even put a drag factor on

that for the wind, you don't have to worry about gravity only, you can put air

resistance in. You can make it not contrived, you can make it visual. And this is the
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old thing you've always tried to teach, that's the unwrapping function modernized.

Uetake: What about polar coonlinates?

Demana: Well, polar, it doesn't do polar directly, you got to convert. So what you have to do

here, let me get rid of these things, let's say you want to do 7 sine of 3 T, 7 sin 3 T.

You have to think about x being r. This is r = 7 sin 3 T. Then x is r cosine T so we

use it as an opportunity to make that connection. So now I get 7 sin 3 t sin t. rve

now parameterized it and I'll just do zoom 6 so you'll see it and there is the familiar

one. But now in an exploratory way, I can go back here and once it's done I can go

back here and change the 3 to a 4, forexample. Ahhhha, this is what the students did

to our teachers. And this is where you have to worry and be ready. The kids, once

they could play with this, are not stuck in the same rut we are and they'll do it.

Wilson: I will enter the end of that as my comment.

Demana: Well, I didn't give up. I put it in. That sin 2.5, 7 sin 2.5 t and you don't have a

complete graph and the kids ask that question, not the teacher. Teachers like me are

so used to sin theta when n is even and odd you never thought beyond because of

what we were stuck in before. This is a natural question for a kid and they found out

that, in fact, the ten leaves there overlap and they can find the period, but the real

lesson for our teachers was you don't know what the kids are going to ask and for

sure you may not be able to answer it. But that's, I claim, that's a healthy

experience.

Hashimoto: Okay, thank you very much again, Professor Demana. I'd like to close this session

now, thanking you very much for you cooperation.

End of Discussion
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STUDY OF PROBLEM SOLVING WITH CABRI-GEOMETRY

IN SECONDARY SCHOOL MATHEMATICS

Nobuhiko Nohda

Institute of Education, University of Tsukuba

Tsukuba, Japan

Background
In Japanese schools, mathematics is considered a key subject. In fact, mathematics is

compulsory in elementary school (six years) and lower secondary school (three years), called

junior high school. In upper secondary school (three years for full-time course), called senior high

school, all first-year students have to take Mathematics I; but in the subsequent years mathematics

is optional. The objectives and content of the mathematics curriculum are determined in the Course

of Study. The Japanese Course of Study is set by the Ministry of Education and has become the

standard syllabus. Textbooks used in class are compiled by commercial publishers according to

the Course of Study and have to be examined and approved by the Ministry of Education before

being used in schools. Details and teaching methods are left to classroom teachers,

Computers are introduced in the Japanese Course of Study in junior and senior high

school, which should be efficiently utilized as the occasion arises. In particular, this matter needs

to be considered in the instruction by experiment, observation and etc. on problem solving. The

availability of computers in mathematics classrooms provides unique opportunities not only to take

advantage of the motivational effects of real-life problems, but also to develop useful methods for

attacking basic problems within the mainstream of secondary school mathematics.

In 1989, the Japanese Ministry of Education recommended the use of computers and hand

calculators in the latest version of the educational curriculum. Computers and hand calculators are

emphasized more in this version than in the former one. This curriculum was designed to help

students have a good sense of mathematical thinking and with a goal that students should become

good problem solvers. In this new curriculum, the soroban (abacus), hand calculator and

computer are given more attention in teaching mathematics in class. Opportunities are also

provided for Japanese students to consider appropriate situations for conjecturing and checking the

results of problem solving. All of the recommendations above are to be implemented in elementary

to secondary school mathematics curricula beginning in 1992 for elementary, 1993 for junior and

1994 for senior high school.
Computer environments are ideal tools to support the implementation of the junior and

senior high school curricula, especially in mathematics. For example Tall's (1985, 1986) research

is based on a cognitive approach to the curriculum. It uses software that is especially designed to

187 204



enable the user to manipulate generic examples of a specific mathematical concept or related system

of concepts and thus to grasp a gestalt for a whole concept at an intuitive level. The learner is

directed through a suitable sequence of activities with examples and non examples towards the

generic properties of the concept. This dynamic process helps him or her to construct version of

the concept by graphic calculus.

Tall (1986) and Schwarz (1989) have used experimental and control classes and shown the

experimental curricula to be clearly superior to the standard curricula in which they were designed

to do. It also appears that visualization plays an important role in this development and that open-

ended learning environments are tools that are well suited for presenting mathematical topics in a

manner that stresses objects and processes while using visual and analytic descriptions in parallel

(Balacheff, 1990).

Problem solving with computer
We will talk about the process of problem solving. There are many assertions about the

process of problem solving. For instance, one is G. Polya's (1957) four-phase description of

problem solving activity. The four-phase involves understanding, planning, carrying out the plan

and looking back. On the other hand, the conjecturing of problem solving processes and results

are some kinds of higher order thinking. These viewpoints lead to the usefulness of conjecturing

in understanding a problem and in making a plan, and in evaluating decisions made and outcomes

of executed plans. If we take these viewpoints, then problem solving processes are a vital context

in which to learn and appreciate mathematical thinking.

We would like to make in details, a comparison using computer with paper-pencil

computation in the situations of mathematical problem solving. There are some thinkings about the

tools of computations with computer in its relation with paper-pencil. One thinking is that,

computer is one of computation, the same as paper-pencil computation. Another thinking is that,

computer serve as the compensate for calculator and paper-pencil computation. Furthermore, we

are thinking that the conjecturing and demonstration with computer are some kinds of problem

solving processes. It is important to study the value of the use of computer in mathematical

problem solving. It is important for students to recognize that computer is useful for

understanding a problem, making a plan, checking the way of solving of the problem, decision

making and outcomes of executed plans.

Cabri-Geometre
We will introduce the software of Cabri-Geometre which Dr. Jean-Marie Laborde

mentioned (1990). Cabri- Geometre (Cabri stands for CAhier de BRouillon Interactif/ Interactive

Notebook, Baulac, Bellemain, Laborde, 1988) consists of a package for constructing geometrical
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figures that can be used for teaching and learning geometry. Cabri Geometry deals with points,

lines, circles and their relations and allows the user to realize geometrical constructions. Due to its

internal representation, the software offers the possibility to move around any of the basic points of

a figure by direct interaction with the mouse. The user continuously sees the figure redrawn in real

time keeping all its initial properties. This basic feature of Cabri makes the user consider a figure

not as a static drawing but as a set of objects linked by geometrical relationships. The user can

manipulate figures freely.
Cabri-Geometre is a microworld. Even if there is no standard definition of what a

microworld is, most authors would probably agree on the following formulations: A microworld is

an (often computer based) environment

- which provides a set of primitives (objects and activities) that can be combined in order to

produce intended effects (computational, graphical, ...),

which offers a variety of different ways to obtain an intended effect,

- which embodies an abstract domain described in a model,

- which is open-ended since it can be used to produce a variety of different, effects that are partially

related.

- A lastcriterion could probably be added: an implemented microworld should offer the possibility

of direct manipulation of the objects.

As in any microworld, Cabri-Geometre encourages the learner to explore the environment,

here the world of Euclidian Geometry. Because it is easier to use (partially insured by direct

manipulation), the learner can get an idea of what geometry is. Figure 1 illustrates an interesting

situation. Here we have a triangle ABC and its reflected image, but if we consider the
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circumscribed circles to ABC and to A'B'C', they do not meet at the symmetry axis. The

following could be used, for instance, as a starting point of a teaching sequence in which

conceptions of students about geometrical transformations would evolve: a transformation does

not necessarily preserve the nature of a geometrical object (as is the case for line-segments, straight

lines, and triangles, in the case of reflection). Here constructing the image of a circle requires

considering the circle as a set of points and constructing the image of each of these points. Thanks

to the menu-item locus of points" shown in the Figure 2, this is easily done in Cabri-Geometre.
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Mathematical Problem Solving with Cabri-Geometre
This research had been studied in the France and Japan Collaborative Research three years

ago. Members of France and Japan Collaborative Research (University of Grenoble and

University of Tsukuba) are as follows:

French members: N. Baracheff, J-M. Laborde, E. Gallou-Dumiel, M. Picq.

Japanese members: N. Nohda, K. Nakayama, Y. Higashibara, K Kakihana,

K. Harada, M. Miyazaki, K. Shimizu.

This research was divided into two parts of studies on mathematical problem solving with

Cabri-Geometre in Japan:

(A) The effect of Cabri-Geometre on studying plane geometry in junior high school: Ms.

Kakihana, Prof. Nakayama, Prof. Higashibara, Dr. Shimizu and Prof. Nohda.

(B) Student's activities of the problem solving with Cabri-Geometre on finding the number
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of diagonals in a polygon: Mr. Miyazaki, Prof. Nakayama, Prof. Higashibara, Dr. Shimizu, Ms.

Kakihana and Prof. Nohda.

(A) 1 1 'A 1 1 1 1 . 11, ki

(1) Aim of the study:

This study aims to investigate the effects of Cabri-Geometre" when solving an open- ended

problem of plane geometry in junior high school.

(2) Procedure of the study:
By comparing an experimental group with the software of Cabri-Geometre and a control

group with paper-pencil, the effects of problem solving on the following aspects were examined:

(a) The possibility of making conjectures in the open-ended problem

(b) The changing of the image toward a figure of plane geometry

(c) The time of manipulations of Cabri-Geometre

(3) Subjects:
The following experiments were conducted at the junior high school attached to the

University of Shimane in February 1991. The two following groups were used for the

experimental and control classes:

(a) Experiment group: 33 students in the seventh grade

41 students in the eighth grade

,.,(b) Control group: 40 students in the seventh grade

(4) Procedures:
(a) The experimental group practiced with Cabri-Geometre for two hours before the

experiment was done. After several days they solved the problemwith Cabri-

Geometre for one hour (cf. Figure 3). Each student used his/her own computer.

(b) The control group solved the same problem without the computer.

(c) The scores were calculated according to the scoring criterion (zero (no answer) to 5

(correct answer); see Table 1 in Appendix)) and statistics ofeach group were

calculated.

(d) The experimental group took pre and post questionnaires about the image of the figure

of plane geometry by the SD (Semantic Differential) method.

(e) Manipulations of the Cabri-Geometre by students were observed and the time to finish

the construction of the figure was recorded.
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(5) Experimental Problem

Here is triangle ABC. Point D is the middle point of side BC and Point E is the middle

point of side AC. Point F is the midpoint of line segment BE and Point H is the midpoint of line

segment EC. Then you can construct a quadrilateral DHEF. If Quadrilateral DHEF has the

following shape of figure, what kinds of shape will the triangle ABC have?

(6) Procedures of Problem Solving

(a) If Quadrilateral DHEF is a parallelogram, then the triangle ABC can be any triangle.

(b) If Quadrilateral DHEF is a rectangle, then the triangle ABC is either an isosceles

triangle or an equilateral triangle.

(c) If Quadrilateral DHEF is a rhombus, then the triangle ABC is a right triangle.

(d) If Quadrilateral DHEF is a square, then the triangle ABC is a right is isosceles triangle.

----

Shape of quadrilateral Shape of triangle ARC

Parallelogram

Rectangle

Rhombus

Square

Others

Figure 3. Problem and Procedures of Problem Solving

(7) Results and Discussion

(a) Making conjecture in the open-ended problem

(a-1) Comparing the significance of the mean scores of the difference between the

experimental group and control group of Eighth grade (Table 2). Students of the control group

scored better on the parallelogram and there was no significant statistical difference between the

experiment group and control group on the rectangle. In the case of both the rhombus and square,

the null hypotheses were rejected.

The reasons why students of the control group scored better on the parallelogram were

because they were familiar with the parallelogram before learning it in plane geometry and they

responded to only the first question.

192 2 n



Table 2 The mean scores of experimental and control groups.

Ex. Group Con. Group t df

parallelogram 3.32 (2.16) 4.66 (1.15) -3.50 80 **

rectangle 2.88 (0.84) 2.70 (1.29) 0.71 80

rhombus 3.39 (1.18) 2.10 (1.55) 4.26 80 **

square 2.51 (1.45) 1.76 (1.45) 2.38 80 *

Note: Significance Level * : 5%; ** : 1%

(a-2) Comparing the significance of the mean scores of difference between the

experimental group of eighth and seventh grade (Table 3), in all cases the null

hypotheses were rejected.

Table 3 The mean scores ofexperimental Eighth and Seventh.

Eight Grade Seven Grade t df

parallelogram 3.32 (2.16) 2.45 (1.33) 2.00 72 *

rectangle 2.88 (0.84) 2.09 (1.68) 2.62 72 *

rhombus 3.39 (1.18) 1.48 (1.70) 5.68 72 **

square 2.51 (1.45) 1.42 (1.60) 3.06 72 **

Note: Significance Level * : 5%; ** : 1%

(a-3) Comparing the significance of the mean scores of difference between boys and girls

included sum of total scores (Table 4). There was no difference between boys and

girls. As far as we observed the lessons with Cabri-Geometre, lots of boys seemed

to be manipulating more quickly and using the function of computer better than

girls.

210
193



Table 4 The mean scores of boys and girls

Boys Girls t df

Second Grade 13.10 (3.92) 11.00 (3.12) 1.86 39

First Grade 9.00 (4.44) 6.06 (5.15) 1.75 31

Contr. Group 11.30 (3.69) 10.90 (3.29) 0.32 39

Note: Significance Level * : 5%; ** : 1%

(b) Changing the images of Plane geometry

After the lesson with Cabri-Geometre, students' images of plane geometry at

seventh grade shifted from the feeling of simple, ordinary and old-fashioned to a

better feeling of sophisticated, diverse and modern-fashioned. Eighth grade

students shifted from the feeling of difficult, troublesome and old-fashioned to

some better feeling of easy, simple and modern- fashioned, but from one feeling of

rewardable to rewardless.

(These data are omitted)

(c) Time of manipulation with Cabri-Geometre

(c-1) Five students of Eighth grade finished the complete figure of the given problem in

five minutes. They mastered quickly the operations of Cabri-Geometre. One of the

seventh grade students finished the complete figure of the given problem in forty

minutes. He was the slowest paced.

(c-2) During the practice time, almost all the students had mastered the manipulation of

the basic operations with Cabri-Geometre in fifty minutes. Later on, they

were able to construct a simple figure of another problem in plane

geometry.

(B) Student's activities of the problem solving with Cabri-Geometre on the finding the number of

diag2naillaJuguanlala.lidiyazaki.

(1) Aim of the study:

This study aims to discover the conditions which lead to conjectural activity for students, to

study the relationship between the types of conjectures and mathematical content and environments

with a computer, and finally to analyze the production of conjectures and problem solving

strategies by students.

This scheme is taken from Fishbein's research on proof; its aim is to provoke the elicitation
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of students' points of view on proof, which will then be compared to their problem solving

behavior. The questions are as follows:

- What is a counterexample?

- What is a proof of the solution of a mathematical problem?

- If a statement has been proven, does the verification of more cases provide more certainty?

- If a statement has been proven, and if a case is found such that the statement is not true for it,

what is the meaning of such an event?

These interviews will be analyzed from a cultural point of view, looking for aspects in

pupils' conceptions likely to prove the existence of differences in their school culture; that is,

differences in the didactic contract, or in the perceptions of mathematics as a socialized knowledge

in each country.

(2) Procedure of the study:
By comparing between an experimental group with the software of Cabri-Geometre and a

control group with paper-pencil, the effects of problem solving on the following aspects were

examined:

(a) What is a counterexample?

(b) What is a proof of the solution of a mathematical problem?

(c) If a statement has been proven, does the verification of more cases provide more

certainty?

(d) If a statement has been proven, and if a case is found such that the statement is not true

for it, what is the meaning of such an event?

(3) Subjects:

The following experiments were conducted at the public junior high school in Tsukuba

City, lbarald Prefecture, in May 1991. The two following groups were used for the experimental

and control classes:

(a) Experimental group: six pairs (12 students in the seventh grade)

(b) Control group: six pairs (12 students in the seventh grade)

(4) Procedures:
(a) The experiment group practiced with Cabri-Geometre for about one hour before the

experiment was done. After several days they solved the problem with Cabri-

Geometre for one hour. Two students used one computer.

(b) The control group solved the same problem without a computer.

Two students used one pencil to solve the problem.

(c) After students' problem solving, the twelve pairs were interviewed.
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While each student was being interviewed, it was video-taped at the same time.

(5) Experimental Problem
Please write your way of thinking about how to find the number of diagonals of a polygon,

and explain your reason why your way of thinking is correct to your friend in the class, when we

have already known its v

(6) Problem solving activities by both Students(SM) and (SH)

(a) Processes of problem solving with cooperative activities by SM & SH.

(a-1)The way to find the number of diagonals of a polygon.

The method: If the number of angles is a, we can find it by (a2-3a)+2

The reason:

A: The number of angles

B: The number of diagonals

C: The minimum number of triangles produced by diagonals

D: The number of diagonals from one vertex

A B C D

3 0 1 0

4 2 4 1

5 5 10 2

6 9 18 3

7 14 28 4

We first make this table. We find B = C/2

Furthermore, we find D = A-3

And , we find AD = C

We find that B = A ( A-3 ) / 2 holds good.

(b) Their responses to the counterexample and their improvement of the solution.

The counterexample was proposed by SM & SH



b-1: SM's response and improvement

b-1-1: SM's response to the counterexample

SM "In a heptagon, there are 14 diagonals?"

Observer "Can you find 14 diagonals?"

SM (After counting diagonals) "Yes, 14 diagonals."

Observer "Does the line overlap the side?"

SM "Yes, but..."

Observer (Indicating the line overlapping the side)

"Is this a diagonal?"

SM "Of course, it is a diagonal."

Observer (Indicating the line overlapping the side)

"What is this?"

SM "It is the diagonal, so it may be a diagonal at least."

b-1-2: The counterexample written by SM.
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b-1-3: SM's improvement of their solution

The improvement of the way how to find the number of diagonals.

No improvement!

b-2: SH's response and improvement

b-2-1: SH's response to the counterexample.

Observer The number of diagonals ought to be 14 by your formula."

SH (SH draws some diagonals, but he doesn't draw the diagonal out of the figure

or not one overlapping the side. Then, he counts the number of diagonals and

triangles.) "12 diagonals"

Observer "The result doesn't match your formula, does it?"

SH "Yes, it does."

b-2-2: The counterexample written by SH

b-2-3: SH's improvement of their solution

The improvement of the way how to find the number of diagonals.

The method: If the number of angle is a, we can find it by (a 2 3a)+ 2

Remark: The degree of each internal angle is less than 180.

What I regard as an internal angle is more than 180.

The improvement of the reason why the way is correct.

No Improvement.

(c) The response to four questions by SM & SH

c-1: The response by SM

Question 1: If you meet the case where something doesn't hold good, what do you think

about that case?
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SM: (By word of mouth) It is a mistake of the problem.

(By writing) "It is a mistake when making the problem."

Question 2: What is the explanation as the solution of mathematical problem?

SM: (By word of mouth) "Teaching why I can have confidence."

(By writing) Getting others to know why I can have confidence.

Question 3: If the statement hasbeen proved, is the verification of more cases gives the

problem solving more certainty?

SM: (By word of mouth) "It gives more certainty."

(By writing) It gives more certainty.

Question 4: If there is a case which doesn't satisfy the statement proved, what does it mean?

SM: (By word of mouth) "The proof was incorrect."

(By writing) It is a mistake of the proof.

c-2: The response by SH

Question 1: If you meet the case where something doesn't hold good, what do you think

about that case ?

SH: (By word of mouth) "The explanation don't hold good."

(By writing) If the case where something doesn't hold good occurs, then the

part which doesn't hold good. That case means that the person who said so is

incorrect.

Question 2: What is the explanation asthe solution of mathematical problem?

SH: (By word of mouth) Grasping the reason in detail such case that this implies it."

(By writing) Making the reason why the answer is correct more detail and more

certain. Because that something doesn't hold good, although it holds good in

some cases, means the way of answer isn't enough."

Question 3: If the statement has been proved, is the verification of more cases gives the

problem solving more certainty?

SH: (By word of mouth) " It gives more certainty."

(By writing) It gives more correctness, because it is possible that it holdsgood
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Question 4:

SH:

in some cases, but it doesn't in other cases.

If there is a case which doesn't satisfy the statement proved, what does it mean?

(By word of mouth) "It holds good in something limited."

(By writing) It is incorrect if it doesn't hold good in some cases. But, after

proving it, when the other case occurs, it means we actually couldn't prove it.

Discussion of problem solving with computer in Working Group I
Problem solving is a central focus of the mathematics curriculum. An effective approach in

solving problems is provided by the handheld calculator and computer, the self-conscious ability to

know when and why to use one's own appropriate procedures. This research indicates that many

executive procedures can be learned, resulting in significant improvements in problem solving

performance. Effects can be obtained with interventions as simple as holding the procedures that

focus on problem solving, and by explicitly and frequently posing questions such as "what are you

doing?", Why are you doing it?" and " How will it help yo ?"

In mathematics, understanding cannot generally be achieved without active participation in

the actual process of mathematics: in conjecture and argument, in exploration and reasoning, in

formulating and solving, in calculation and verification. Calculators and computers are like "fast

pencil", so the mathematical process can be made more useful and efficient than with paper and

pencil. Instruction based on calculators and computers has, therefore, the potential to enhance

more understanding than does traditional instruction. Calculators and computers also appeal to

teachers because they introduce excitement and inventiveness to otherwise routine courses.

Technology must be used when it can enhance the teaching and learning of problem solving.
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Appendix Table 1 Scoring Criterion

Shape of quadrilateral A shape of triangle ABC score

parallelogram all kinds 5

special triangle 3

rectangle isosceles & equilateral only 5

isosceles & equilateral & others 4

isosceles & others 4

isosceles only 3

equilateral & others 4

equilateral only 3

rhombus right triangle (angle B. 90) 5

right triangle 3

square right isosceles angle B=90, AB=BC 5

right isosceles 3

error

no answer 0
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Discussion

Demana:

Miwa:

Nohda:

Demana

Teague:

Nohda:

Demana:

Choate:

Nohda:

of Professor Nohda's paper:

Thank you very much. We will now open the diq.ussion. Does anyone have any

comments or questions? Professor Miwa.

My question regards page five, fourth line from the bottom. It refers to the control

group of 40 students in seventh grade. Isn't this the eighth grade, because otherwise

there is discrepancy between tables 2 and 3.

Professor Miwa is correct, it is the eighth grade.

Professor Teague.

When the students used Cabri-geometry to answer this first question, did they have

any way of justifying their answer, or do you think they just experimented until they

saw what they thought the pattern was and then reported that result? It seems to me

that if you do the problem without the computer, you have to have some reasoning

processes that would almost be a justification for the answer, but by using the

computer you could arrive at the answer and not really have any sort of rationale or

justification - it's just that you tried it and itworked that way.

In my presentation I didn't explain how it is evaluated. The evaluation goes as

follows: the point values go from zero to 5, and zero means there's no answer, 1

means the answer is wrong, 3 means they gave a conjecture but no proof, and 5

means that both the conjecture and proof were correct. And so if it's insufficient,

then the points are in between.

Additional comments or questions? Jon.

Did you in any way have the students explain how they used the technology to solve

the problem? That is, before they actually sat down and started playing, did you ask

them to give an experimental design of how they were going to approach the

problem?

This is something new to Japan also, so there isn't much data; but, in this case, the

students spent one whole week after school learning how to manipulate or operate
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this software and then for one hour in regular class they worked on this software

given similar problems.

Choate: I am beginning to get the feeling that the definition of an open-ended problem is quite

different for the United States and for the Japanese. The notion of having a problem

that has a lot of approaches but a correct answer is not necessarily what I consider to

be an open-ended problem, and let me just be specific in terms of what we just saw.

If you take the figure as built and ask what can you tell me about the figure, one of

the things the students would notice is that you've got a different rectangle; depending

on the triangle, you've got a different inner shape. But there are lots of other

questions that they could also ask about area and things like that. I wonder if we're

teaching different things when we teach problem solving? I guess I think we do.

Nohda: Certainly in this particular case you cannot call this open-ended. This is just a

beginning and from this one you can develop it to an open-ended type problem.

Becker: I'd like to make a comment in response to Jon's question. The question concerns

what is the Japanese concept of the open approach in teaching mathematics and

maybe some of our Japanese colleagues would like to comment on this and,

especially, correct me if I'm wrong. Basically I think there are three components to

the open approach. One component is when you have a problem that has a unique

solution, but there may be many different ways (solution paths) to get that solution.

Another component is when you have a problem that indeed has several or many

different correct answers (or solutions). Another component is when you have a

problem that might be solved in many different ways but the problem has the

characteristic that other problems can be posed or formulated following the solution

of the first problem. The Japanese may have used the terminology "developmental

approach" in this case. There are at least these three components that I believe make

up the Japanese idea of the open approach. These are addressed in Professor

Shimada's book on the open approach and probably in some other publications also;

e.g., Takeuchi and Sawada's book.

Nohda: That is correct.

J. Wilson: As a comment, I see another possibility in this problem other than whether it's open-

ended or not by our definition. It seems to me that the potential here is what if I take
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this thing and change the conditions so there's abigger mathematical problem in this

other than the specific problem. I really think it's quite pretty. It's very nice.

Becker: I wonder if Professor Nohda might take a little time and describe Cabri-geometry a bit

more? Where does this software come from and other background?

Nohda: Please look at page 2, for information about Cabri-geometry. Please read it for more

information, okay? We enjoyed the Cabri-geometry software which Dr. Jean-Marie

Loborde mentions and which means geometrical figures that can be used for teaching

and learning geometry. Cabri geometry dealing with point-line relations and allows

the user to realize geometrical constructions due to internal structure of the software,

for the possibility to move around any of the basic point of a figure by direct

interaction with the mouse. The user continuously sees a figure, indeed all it's initial

properties; this best figure of coverage makes for the user the points of the figure not

the static drawing, but the central object by geometrical correlations. The user can

manipulate figures freely. Cabri-Geometry is a micro-world. Even if there is no

standard definition of what a micro-world is. Also I would probably agree on the

following relations. A micro -world is often a computer based environment.

Dernana: If it's not out of order, can the chair ask a question? Your last paragraph on page 14,

I think, is an eloquent defense for the use of technology in mathematics. I would

simply take the last sentence where it says "Technology must be used when it can

enhance the teaching and learning of and insert "almost anything" and use that as a

support for the use of the calculator from the low end all the way up. I would like to

hear either the speaker or anyone else respond to that challenge.

Nohda: I would say that technology must be used when it can enhance the teaching and

learning of problem solving.

Becker: I would agree essentially with the spirit of that comment, but one of the things that

goes through my mind, as we talk about the use of software and technology in

teaching and learning mathematics, is how can the software enhance effectively

teaching and learning mathematics in the curriculum? One of the key questions may

be selection of the proper software to use at the right time in a mathematics lesson.

Then we have to ask questions like "To what extent can potential users like teachers

make those decisions?" and "How far are we from that objective?"
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Teague: I think I disagree with Jerry. The question isn't quite like where do we use it at just

the right time, but thinking of software it comes to whether we and how do

I approach and think about mathematics if I have this as a tool any time I choose

it...not just during a one hour class when I'm doing one particular problem that I can

use the software on. How does my thinking about mathematics and the way I

approach problems change if the software or the calculator is my constant

companion?

J. Wilson: I was going to add that I think the spirit of what is exciting to me about having a

variety of tools available, not only the way that Dan phrased it which is very nice, but

it raises questions of what and how can we think about mathematics differently given

these tools. What mathematics can we now approach in the schools? How do we

develop thinking that's basically different now that these tools are available? It opens

up lots of new opportunities and I think all of us have to think about and work on

those things and it's not an easy task. I think that you could look at the careers of

Demana, Waits, Fey and Dugdale and those which think constantly about these kinds

of tools and making them available to the rest of us in education.

Choate: I heard a quote by Richard Feynmann, a physicist, that really helped me understand

problem solving. This quote was when he was asked "How do you learn problem

solving?" He said the first thing you have to do is listen to what the problem is trying

to tell you, before you tell the problem all the mathematics you know. And when you

think about that I think that really says something about what technology we have

now. Technology now allows us to listen to problems and watch as people play with

Cabri-geometry or Sketchpad or I think what we're seeing is the beginning of the

truth of that statement that you now have the ability to play with problems, to listen to

problems in a way we never have before. And I think we're just beginning to

understand what that means and what we do with that as educators. But I don't think

we can forget that the very sort of playful aspect that we're talking about educating

children and children like to play. I think this is very important, the ability that the

technology allows us to play. I hope we don't forget that.

Damarin: I don't want to disagree at all with the spirit of what's been said but perhaps I take a

more cautious approach to some of these things. Joseph Weisenbaum was the first

person that I know of that made the observation that when you give a child a hammer,
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suddenly everything looks like it needs hammering. And I think that we might be

erring in that direction. I think we have to always be concerned with that question. I

also think that Mr. Sawada's questions this morning were very important. As we

look at what these technologies are doing to our curriculum as we enter into that

playfulness, and get swept up in it, maybe we forget what we're doing.

Becker. I would like to hear more from the strong proponents of this use of software, as to

how the role of the teacher changes in the mathematics classroom, so that these good

aspects of the use of the software will benefit all of the mathematics students in the

classroom.

Teague: The first thing that happens is the teacher is no longer the fountain of all questions.

They aren't the holder of the questions any more because students are now able to ask

their own questions. And that seems to me to be half of mathematics. For a long

time mathematics has been the answering of questions, but a large part of

mathematics and mathematical understanding is knowing what questions to answer,

what questions to consider. That's the most obvious first change in the teaching -

that students now ask the questions.

Dugdale: Another aspect of it is that we traditionally have students responding in class with an

expectation that they will be told that they are either right or wrong. With the

implementation of computers, students often enter a response into the computer to see

what effect their response has on a mathematicalmodel, rather than to be told

authoritatively whether they are right or wrong. I think this change of interaction

modes has lots of implications.

J. Wilson: Backing away from just the technology, I think we are to be held accountable, we

teachers, for anything that's going on in the classroom. Heaven knows that most of

the stuff that I see out there that's in classrooms is deadly. Kids can't draw graphs

because it is so tedious, boring and overwhelming that they never learn. Somebody

should be held accountable for that disaster that's going on. If we introduce a new

piece of software, certainly we should be held accountable for what happens with it,

but let's don't say, don't use software; let's keep doing the stuff we've been doing,

we don't have to defend the old stuff, but anything that's new we do have to. I think

we have to be accountable for everything that comes along.
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Sawada: I think I may speak for many teachers not necessarily the people who are here today,

however. The focus on problem solving as opposed to, say, word problems per sc

seems to be something that has arisen since the introduction of technology and

computers to the classroom. Is it reasonable to think of the word problem and

problem solving as being separate, or are they aspects of the same sort of thing?

Fey: I don't know that I'm the best spokesman to respond to that, but I certainly would

disagree with the notion that problem solving has been a result of technology or even

an emphasis on it. If anything, in this country, the impact of technology has been

given a boost by a sort of a new awareness of the role of problem solving; but I'm

old enough to remember that we wrote about problem solving in the 1950s as well.

And there were people working in that area, historically, way back. I don't find

problem solving as distinct from word problems or something that uses technology,

and I certainly work on problems which I don't consider word problems and don't

use computers. I would add also that some of the things that I like to do with the

computer, in playing with it and in playing with problems, involves exploration and

when I'm ready to turn the computer off, I haven't solved the problem, I've created a

problem. I've got something new. Then there's the demonstration to be done or an

exploration that's away from the computer. So, the role isn't just in problem solving,

it's one of problem generating or exploration and finding new areas.

Demana: Perhaps in the interest of staying on schedule please join me in thanking our speaker,

Professor Nohda, and get ready for the next one so we don't get too far behind.

Thank you very much.

End of Discussion
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MATHEMATICS INSTRUCTIONAL SOFTWARE IN JAPANESE CLASSROOMS

Shin'ya Sakitani Shinji lids.

Hyogo University of Teacher Education Fukuoka University of Education

Hyogo, Japan Fukuoka, Japan

I. Instructional Software in Mathematics Classrooms

We can divide the mathematics instructional software often used in Japanese classrooms

into the following three broad categories : drill and practice, demonstration of mathematical idea

and process, and presentation of learning situation.

Drill and Practice
Computer-based drill and practice makes it possible for students to execute them at their

own paces. Students can get an immediate feedback or diagnostic comment from the computer

when they make an error. The computer is more effective and efficient than a teacher in diagnosing

and correcting the student's error.

Records of the students' responses are stored in the computer. The teacher can make use

of them to evaluate their understanding and progress. The teacher also gets some suggestions for

further teaching from this information.

DgMOSIXaliQ11.21.11141h=tiOlidedIANINDOM
We can display the mathematical idea and process on the computer screen. For example,

we can display some cutting planes of a cube on the screen. Another example is to show the

process which converges into a rectangle as we divide a circle into smaller fan shapes and put them

side by side. This is the process to find the formula for the area of a circle. Though students can

carry out these operations, actually it might be too time-consuming and sometimes dangerous.

The computer carries them out efficiently instead of students. The purpose of these software is to

facilitate the students' understanding of mathematical idea and process.

Presentation of learning situation

It is necessary to prepare the appropriate learning situation for successful learning. If

students get such a situation, they will begin to explore the situation and analyze itmathematically.

The computer can present such a situation by giving the data necessary to learning and sometimes

by taking the form of a game. Studentsmight start their mathematics learning for themselves from
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these data or games.

Of course, like the case of demonstration of mathematical idea and process, students can

actually collect the data from their daily lives or do the game by themselves. But, in these cases, it

might also be time-consuming and it is possible for a computer to present not only a real life

situation but also a situation which might exist.

Some examples of these instructional software will be illustrated in the following section.

But, these software only make students receive the information from the computer. When we

explore the effective use of the computer, we must develop the software which requires more

active involvement of students with the computer. In such software, students can act on a

computer and make use of it as a tool for doing or exploring mathematics. So, we call this kind of

software "exploration software." Examples of such software are THE GEOMETRIC SUPPOSER

and THE GEOMETER'S SKETCHPAD which were developed in the U.S.A. So as not to bring a

computer to an end as "electric picture-card show," we must strive to develop software of this sort.

Though it is difficult to find exploration software in Japan, we were able to find software

of this kind which was developed by a Japanese senior high school teacher. We will present this

software in the latter half of this paper. But, this kind of software is not so popular in Japanese

classrooms. Almost all software which are used in Japanese classrooms belong to the above-

mentioned three categories.

2. Some Examples of Computer Use in Japanese Classrooms
(1) Computer Use as Drill and Practice.

Needless to say, the purpose of computer use as drill and practice is mastering various

skills. By using the computer as a "data bank" of problems, many software for learning enable us

to treat the following three matters which are indispensable for mastering skills:

(i) To be able to select the skill which should be mastered. (We can usually select that on the

screen of the main menu.)

(ii) To be able to select the level of the skill which should be mastered. (We can usually select

that on the screen of the sub-menu.)

(iii) To be able to tackle a number of exercises which are successively displayed by the

computer, for the purpose of mastering the selected skill Some exercises are displayed by

the computer, and others are inputted by the learners.
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Software for Arithmetic Learning by Osaka Publication Company

Dropping Balls Grade 1 Area of Circle Grade 5

Flash Cards Grade 1-3 Extended Figure Grade 6

Clock Grade 1-2 Drawing Pictures The Lower Grades

Traffic Survey Grade 3 Game of Labyrinths The Higher Grades

Circle Grade 3 Dice All Grades

Game of Pitching

Camps

Grade 4 End

figure 1

a. Dropping Balla ( Grade 1)
Purpose : Mastering skills of joining and separating numbers from I to 5

Method of use : Select "Dropping Balls" on the screen of the main menu, then the sub-menu such

as is displayed in figure 2. On the screen of this sub-menu, select "joining" or

"separating."

Dropping Balls

joining

separating

f10 ;end

figure 2 figure 3

An example of "joining"

1. "How many balls do you put in the left side?" "2"
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2. "How many balls do you put in the right side?" "3"

3. Figure 3 is displayed on the screen.

4. "space"; These balls are dropped in the lower box.

5. "space"; The balls in the lower box come to be seen.

6. "space"; The sub-menu can be displayed again.

Figure 4 shows an example of "separating".

b. Clock ( Grade 1-2 )

Purpose: Mastering skills of telling the indicated time and setting the hands of the clock for the

indicated time.

Method of use: Select "Clock" on the screen of the main menu, then the sub-menu such as figure 5

is displayed. Though the learning content of "Clock" between Gr.1 and Gr.2 are

distinguished on this screen of the sub-menu, our Course of Study says that first

graders should learn most of this content.

Clock

Gr. 1 Gr. 2

What time? What o'clock and
what minute

Setting the hands
of the clock

Moving the hands
of the clock

figure 5

Exercise of clock

What o'clock and what minute

figure 6

An example of "What o'clock and what minute"

Input the time which the analogue clock shows by punching ten keys on the keyboard.

(see figure 6) For example, when the analogue clock shows 8:30, we input "8" "30". If the

answer is correct, a mark of a correct answer is displayed under the digital clock. Even though the

answer is wrong, the learners can try to input up to three times. If the learners make errors three

times, a correct answer is displayed.

In the activities of "Setting the hands of the clock", pupils can set the hands of the analogue

clock for the indicated time by the digital clock.
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(2) Computer Use as Demonstration of Mathematical Idea and Process

The purpose of computer use as demonstration of mathematical idea and process is mainly

helping the learners understand certain knowledge. Visualization plays an important part in

understanding knowledge; moreover, by using computers, we can visualize certain knowledge

dynamically. Though we could not help demonstrating certain knowledge by using concrete

objects such as teaching aids until now, we think the simulation by computers promotes

understanding of knowledge.

a. Area of Circle ( Grade 5 )

Purpose: Understanding the area of circles

Method of use: Select "Area of Circle" on the screen of the main menu, then the sub-menu such as

figure 7 is displayed. "Area of Circle 1" demonstrates a circle which is divided

into many sectors and transformed into aparallelogram. "Area of Circle 2"

demonstrates a circle which is divided into manyconcentric rings and transformed

into an isosceles triangle.

Area of Circle

Area of Circle 1

Area of Circle 2

f10 ;end

figure 7

How many parts do you
divided(an even number
4-32)? 12

Ai

space ;next

figure 8 figure 9

An example of "Area of Circle 1"

1. Input the number of dividing sectors (an even number 4-32). Then, the circle is divided

into two equal parts and further divided into sectors according to the number inputted.

2. "space"; Two half-circles are partitioned into the parts like saws, and stopped such as

figure 8.

3. "space"; Two parts like saws are joined.

4. "space"; "radius" and "half of circumference" are displayed as measure.

Figure 9 shows an example of a screen included in "Area of Circle 2"
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(3) Computer Use as Presentation of Learning

Though the computer use as drill, practice and demonstration is typical in Japanese

arithmetic-mathematical education, the activities tackled by computer use cannot necessarily be

regarded as problem solving. So, let's introduce software for presentation of learning situations

which is suitable as problem solving through the use of computers.

Since these are also displayed through certain simulations, it is difficult to distinguish this

type from the type (2). But, we think, this type of computer use gives impetus to generate

mathematical ideas from presented learning situation or apply these to problem solving. Then, we

can distinguish this type of computer use from the type of (2) which demonstrates directly

mathematical ideas and processes themselves.

a. Traffic Survey ( Grade 3 )

Purpose: Being able to apply lists and graphs to data reduction for the traffic survey

Method of use: Select "Traffic Survey" on the screen of the main menu, then sub-menu such as

displayed in figure 10.

o you want to see the sample?

sample

problem

end

Please select by return

figure 10

Let's survey the conveyances on
the road.

Take count of various conveyances,
then make lists and graphs.

Count as you draw the letters "I".

Let's begin.

space ;next

figure 11

Next, a screen for explanation (figure 11) is displayed. But, in using this software as an

introductory learning situation, we had better ask the learners such questions as follows:

"What kind of and how many conveyances on the road?"

"How do you record and represent?"
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figure 12

trucks

busses

cars

autobikes

I
6

10

4

5

space ;next

figure 13 figure 14

1. "space"; Four kinds of conveyances (trucks, busses, cars and autobikes) start passing on

the road on the screen as in figure 12. The learners record the number of these

conveyances without exception and duplication, as they watch this screen.

2. "space"; The right list of recording such as figure 13 is displayed.

3. "space"; The bar graph such as figure 14 is displayed.

b. Game of Pitching Camps ( Grade 4 )

Purpose: Introducing the method of requiring area of rectangles through the game of pitching

camps

Method of use: Select "Game of Pitching Camps" on the screen of the main menu.

1. "space"; The first camp of the player A is determined by computers at random (see figure

15).

2. The player B selects one of the camps by cursor keys and determines it by the return key.

Both players must determine the new camps adjoining any camps which have been already

pitched by themselves.

3. When either player A or B cannot pitch any camps, the game is over. By means of asking

the learners such a question as follows : "How do you determine which player won?", we

would like to make the learners turn their attention to the area. According to the result of

the game, it is possible that we cannot easily determine which player won. In this case, we

would like to make them realize the necessity of introducing the measure like a section

paper.

4. "space"; The measure is introduced (see figure 16). The learners take count of measure by

themselves.

5. "space"; The computer displays the sum of the measures which there are in the camps

pitched by both players.
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figure 15 figure 16

3. ANALYTIC SUPPOSER
(1) The contents of the software

We give an outline of exploration software which we found in Japan and we will illustrate

how this software is used later.

This software has three kinds of screens. These are the following three types:

On the screen of type A, we can draw the graphs of functions by typing the expressions of

functions whose independent variable is X. We can change the domain of X and Y freely. If the

expression of function contains the letter "a" or "b", we can change the value of "a","b" regularly

according to the increment of "a","b", and we can draw the axes of coordinates in any scale

interval. As the color of expression corresponds to the color of graph, it is easy to discriminate the

graphs.
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Type A

Y=

Y =1

Y=

Y=

X Ell]

SYS
value of "a"=

increment of "a"=

value of "b"=

increment of "b"=

scale interval =

Type B

X=

Y=

X=

Y=

I I

[ 1

X

T

1

I

value of "a"=

increment of "a"=

value of "b"=

increment of "b"=

scale interval--

Type C

R=

R.

R=

R=

1

I

I I

S X 5

Y

T

value of "a"=

increment of "a"=

value of 'le=

increment of "b"=

scale interval=

1 1

We can extend the domain on the screen twice or reduce it half. So, if we continue this

operation, we can extend or reduce the domain on the screen as large or small as we want (zoom

-out or zoom-in). Furthermore, we can move any point on the screen to the center of screen.

These operations are executed easily by pushing the following function keys.

draw the graph

"f.2" or "Rollup" increase the value of "a" with every increment of "a"

"f.3" or "Rolldown" decrease the value of "a" with every increment of "a"

"f.4" increase the value of "b" with every increment of "b"

"f5" decrease the value of "b" with every increment of "b"

"f.6" extend the domain on the screen twice
ufT. reduce the domain on the screen half

"f.8" display the sign + (and we move it by ")", "T" and "4,"

keys, then draw the graph whose center is that point by "return"

key)

"f.10" change the type of screen
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On the screen of type B, we can draw the parametrized curves whose parameter is "T". On

the screen of type C, we can draw the curves of polar equations which involve the variables "R"

and "T". The functions of function keys are the same as the case of type A.

(2) The purpose of the software

Students sitting in front of the computer input some expressions of functions and draw

their graphs first. They will conjecture the properties of functions observed from graphs. Their

conjectures can be quickly tested by drawing the graphs of other functions. When their conjectures

hold with other functions, they want to prove them somehow. This gives a good motivation for a

proof. If they find counterexamples for their conjectures, they abandon them immediately and look

for other properties. We consider these activities as the process to do or explore mathematics.

The purpose of this software is to make students derive their conjectures about properties

of functions and elaborate them. At this process, this software allows students to find examples or

counterexamples for their conjectures easily. This is the case of using the computer as a tool for

doing or exploring mathematics. So, we name this software "ANALYTIC SUPPOSER" by

torturing THE GEOMETRIC SUPPOSER. We hope that this software will give new ways for

students to learn analysis at the secondary school level.

(3) Some Examples of How to Use ANALYTIC SUPPOSER

We will show some examples of how ANALYTIC SUPPOSER is used. The contents of

the following illustrations, however, should be the results of students' trials and errors. Students

would input many expressions of functions until they got these results.
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Example -1 

A = 1.5 
A03 t ca .5 

B = 3 
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vz 7 ESC 
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Students can find some properties of linear function by changing the value of the coefficient 

of x and constant term. For example, they will find the following properties by drawing the 

graphs of y=ax+b, y=axb for some values of "a" and "b". 

1) If the coefficient of x is positive, the graph has a positive slope and slants upward from left 

to right; if the coefficient of x is negative, the graph has a negative slope and slants 

downward from left to right. 

2) A line with large positive slope rises faster than a line with small positive slope; a line with 

small negative slope is steeper than a line with large negative slope. 

3) The graphs of these functions are lines with the same slope or parallel to each other when 

the value of the coefficient of x is equal. 

4) The graph of y=ax+b is a shift upward b units of the graph of y=ax; the graph of 

y--=---axb is a shift downward b units of the graph of y=-ax. 

From these properties, students can conjecture that the graph of the linear function y=ax+b 

is a straight line with slope "a" and y-intercept (0,b). 
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Example - 2

Students will fmd the following properties about a quadratic function by drawing the

graphs of y=ax2, y=ax2+b, y=-ax2bx for some values of "a" and "b".

1) The graph of a quadratic function is a parabola and symmetric.

2) Each graph has the same shape when the coefficients of x2 are equal. The only difference

is the position of the graph.

3) When the coefficient of x2 is positive, the parabola opens upward and the larger the value

of coefficient, the narrower the parabola becomes; when the coefficient of x2 is negative,

the parabola opens downward and the larger the coefficient, the broader the parabola

becomes.

4) The value of "b" of y=ax2+b shifts the graph of y=ax2 vertically, but does not change its

shape and its axis of symmetry.

5) The value of "b" of y=ax2bx changes the axis of symmetry of y=ax2, but does not

change its shape.

From these properties, students may conjecture that different values of "a","b", and "c" of

the quadratic function y=ax2+bx+c affect the shape of the parabola, the axis of symmetry and the

y-intercept, respectively.
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Example - 3

A = 3
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=
=
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Students may draw the graphs of some rational functions and find some properties. For

example, if the degree of the denominator is larger than that of the numerator, the value of function

approaches 0 as x gets larger, if the degree of the denominator is smaller than that of the numerator,

the value of the function approaches ±-00. But, if the degrees of denominator and numerator are

equal, the graph of the function is rather strange. In order to explore this case, students may draw

the graphs of y= 2 and x2 1
for some values of "a". They will conjecture the following

x + 1
properties from these graphs.

1) If the denominator is not 0 for every x, the value of the function approaches one real

number as x gets larger. In fact, the line y=a is a horizontal asymptote for the graph of
ax2

Y=XT:7-1"
2) If the denominator is 0 for some xs, the graph of the function has some vertical

asymptotes. Since x=±1 make the denominator 0 for the function y= x2 , the line

±1 are vertical asymptotes.
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Example - 4
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The zeros of a function defined by y=f(x) are solutions to the equation f(x). So, if
students draw the graph of y=f(x), they can get the approximate values of real zeros of this
function by extending the domain on the screen and making the scale interval smaller. For

example, if students draw the graph of Y=x6x5+x2-3, they fmd that there is a zero between 1 and

2. Then they can fmd that there is a zero between 1.3 and 1.4 by extending the domain and
making the scale interval 0.1. Here, they can approximate to the nearest tenth the real zero of this

function; that is, the solution to the equation x6x5+x2-34. If they want to get a more accurate

value, they can repeat this procedure.



Example - 5
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If students draw the graph of parabola y=ax2, this graph contains the point (1,a). They

may draw the line y =b(x -1) +a which also contains the point (1,a) and change the values of "a" and

"b" in order to find the relation between the slope of this line and parabolas. From these activities,

they may conjecture that the slope of the tangent line to the parabola y=ax2 at the point (1,a) is 2a.

But, from the graph of parabola, the slope of the tangent line cannot be 2a always. So,

they will change the point which is contained in the parabola and keep on exploring. For example,

as the point (2,4a) is contained in the parabola y=ax2, they change the expression of the line to

y= b(x -2)+4a and repeat the preceding activities. But, in this case, the slope of the tangent line is

4a. From this and previous results, they may conjecture that the slope of the tangent line to the

parabola y=ax2 at the point (x,ax2) is tax. These activities may lead students to the concept of

derivative.
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Example - 6
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If students have learned lim (1+1 )x =e , some students want to explore the limit for a

similar expression. They may draw the graphs of the function y=(1+1)x for some

values o "a". They will find that the value of (1+ fe )x gets closer to some fixed number as x gets

larger. They may conjecture that the limit value of this function is ea and draw the graph of y=ea to

confi rm this conjecture.
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Example - 7
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Students can draw the graphs of functions which are constituted from circular functions.

Some students may draw the graphs of y=sinax+cosax for some values of "a" and find the

property that sin2x+cos2x=1 for all values of x. Other students may draw the graph of

y= sin /0x and conjecture that the value of this function approaches 1 as x approaches 0. Some of
sin(ax)inS

them will further explore the function y= s for some values of "a" and find that the values of
a2

these functions approach -Ay as x approachexs 0.

If students have learaned lim xsin +c =1, they may try to find whether xcos 7-!.c. and
x -400

xtan 4.( have similar property by drawing the graphs of y=xcos- x -( and y=xtan+c .
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Example - 8
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Students can draw the parametrized curves. If they draw the curve whose parametric

equations are x=asin(t), y=a2cos(t) and change the value of "a", they get a circle when a=1,

ellipses when a#1. From these data, they may conjecture that the curve is a circle when the
coefficients of sin(t) and cos(t) are equal; it is an ellipse when they are different

Some students may draw the curves whose parametric equations are

x=a(tsin(t)), y=a2(1cos(t)) for some values of "a". They will get a cycloid when a=1.
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Example - 9

Ifig = 1
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can get the inverse function of one-to-one function by interchanging x and y. If

students draw the graphs of f(x=t,y=at-4) and g(x=at-4,y=t) for some values of "a" , they may

conjecture the property that these functions are symmetric with respect to the line y=x; that is, one

graph is obtained from the other by reflecting it across the line y=x. They will confirm this

conjecture when they draw the graphs of f(x=t,y=at3) and g(x=at3, y=t) for some values of "a".

When students draw the graphs of f(x=t,y=t2) and g(x=t2,y=t), they will find that if the

function (f) is not one-to-one, it cannot have an inverse function because g is not a function; that is,

certain values of x produce more than onevalue for y.
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Example - 10
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Students can explore the concepts of polar coordinates by drawing some curves of polar

equations. For example, they will find the following properties about polar coordinates by

drawing the curves of r=a, r=bt, r=bt and by changing the values of "a", "b" and the domain of
1I e

1) The value of "t" indicates the measure of angle from the polar axis. Radians are used to

express the measure of "t".

2) The value of "r" indicates the distance from the pole to the point in the plane.

3) If "r" is positive, the distance is measured along the ray of angle "t" emanating from the

pole; if "r" is negative, the distance is Irl and measured along the ray directly opposite the

ray of angle "t".

Students may draw the curve of r=a+bsin(t) and change the values of "a", "b" and the

domain of "t" to confirm their findings.
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Discussion of Professors Sakitani and Iida's paper:

Demana: We are now open for discussion/comments/questions,

Teague: This last software is an example of the kind of software I was referring to in the last

talk. In terms of giving students access to the software over the course of their

school career, the other software did one problem and after you've done that

problem, after you've rolled the rectangle, it's no good for any other problem. In this

software, there's no problem, no particular problem that it's designed for but will

handle problems as they come up. And what I'm interested in is what happens to the

student in terms of their mathematical thinking if they have access, if the student has

access to software like this over their school career?

Sakitani: Well, they don't have much experience of using this software yet, but according to

the teacher who created this software, he said that his students enjoyed this activity

very much.

Fey: In defense of the drill and practice type program that Professor Iida showed, I looked

at some data in the report of Henry Becker (provided by Jerry Becker) about U.S.

use of computers and the most popular use by math teachers is drill and practice

programs, the second mostpopular use is programming, and the third is tutorials.

What I would like people to comment on is why is it that teachers seem to want one

thing from software and those of us who are developing new ways of thinking about

the curriculum want something very different, and how can we begin to bring those

two points of view closer together?

Lida: At present in Japan, drill and practice software is not very popular to use because this

goes along with the present curriculum and it supports the present curriculum very

well. Therefore, teachers tend to use this type of software and because there are good

sales, the manufacturers try produce a lot more of this type of software. However,

when we consider what the computer can do and then certainly the things we're

discussing about the problem with the conjectures, discovery, properties, that type of

problem will come out.

Fey: Is it really only because drill and practice fits the curriculum. Can we just change the

curriculum and have all these other things? I think there's something deeper, a
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number of things deeper, in teachers' attachment to drill and practice software. I

don't know, maybe not. I don't think it's just a matter of changing the curriculum.

Sugiyama: Acquiring the mathematical skills, addition, subtraction, multiplication, division, that

kind of skill is very important. By using this type of software, you can change the

level of problems suitable for the student and they can drill well and that probably is

the main reason for using this type. Another one is that, actually, not very many

other types of software are available at present.

Morimoto: The problem solving type of software is not necessarily better than drill and practice

type of software. Both are important and, especially, for acquiring the mathematical

skills for addition and subtraction types. They require a lot of repetition. The time

for each student to achieve the goals is quite different and therefore this type of

software is very appropriate because they can give different levels of practice and you

can spend as much time as you want on it. Tti.: problem right now is that most

software available is not much different for the type of problem you give and can

solve by using pencil and paper. That is not appropriate, and software should be

much more flexible because otherwise there's no really good reason for using

computers.

Damarin: It seems to me that one of the issues is that we're switching to a highly visual medium

and, if we look at the data from both countries yesterday, what students tended to do

was to take visually presented or figural problems and solve them in words,

arithmetical expressions, or algebraic expressions. They're much more comfortable

transforming a figural problem to something else and then working on it. Most of the

software that we've seen here has been highly visual in the way problems are

presented and worked on and, I guess, I think we need to work on some transitional

kinds of software. The last two pieces that Mr. Lida presented, to my way of

thinking, fall into that category as do some other things like green globs, of what I

would see as transitional software that many, many kids will need to use in order to

really be able to interpret what they see on screens in this more sophisticated

software. So, I guess I am talking to teachers - that's my best shot at it.

H. Wilson: Concerning the last presentation, the graphics, I was very impressed with the front-

end friendliness of the computer inter-face, in which you were able to make

adjustments in the parameters concerning the graphing and it looked very nice. My
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Sakitani:

H. Wilson:

Sakitani:

concern is the speed with which the graph was produced. I'm thinking of the

development of the function values over the domain of the function to see it. My own

experience in teaching is that as the student watches this, I try to slow it down, rather

than speed it up, for understanding purposes. Is there a variable within the software

that permits you to slow the graphing function down?

Iida's explanation is the since he's now using the thirty-two bit computer, that's one

reason it goes fast. You can probably use a sixteen bit one and slow it down. Also,

the language used here is Pascal. If you use Basic or some other language it may

slow down too.

But can you adjust it? Can it be adjusted within the software? No?

No.

I'd like to get back to that issue of the use of drill and practice by teachers more than

the use the graphics -type software. To me, in this country, the problem rests more

with the teacher feeling comfortable with where the lesson is going to go. With the

drill and practice software, as a teacher, I know exactly what a child can do and

cannot do and how far they can go with it. I know that it fits the lesson that I have

planned for today. To me teachers are threatened by the fact that they no longer have

control of where the mathematics is going to go when you have graphics-kind of

software. Students can come up with situations that the teacher is unfamiliar with.

Every time I play with one of these graphics programs I come up with graphs I don't

understand, I don't know where they came from, and as soon as I understand one,

someone gives me another that I do not understand. So I think that isuncomfortable

for many teachers in their perception of their role of what they're supposed to be

doing and what control they have in the classroom, and that's mainly the issue as I

see it in this country.

Sakitani: It is certainly true that when I acquired this software it took one whole night to learn it

but I really enjoyed it.

Uetake: I would like to give a comment. Number one is about the speed of the program in the

computer. Well, certainly it is possible to program it so that the you can slow down

the whole process and, in fact, there is some software available which deliberately
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slow down the whole thing for the students, so that they have enough time to

understand. Number two, why is the drill and practice type of software popular? It's

because, from the machine paint of view, the computer has a very good ability to

show on the monitor all the graphics and stuff like that, but what of it's

communicative ability? So you input and the computer understands what you input.

This ability is not very high yet and that's why it is difficult to make sophisticated

software, especially like a tutorial type of software, which requires a lot of response

recognition from the student and then further response to it in order to proceed.

Especially in the case of tutorial type of software, it requires not only understanding

the student's response but to that response the computer has to respond accordingly.

If it's the drill and practice type, the decision made by the computer is just "yes" or

"no" and so this is quite simple; but in case of the tutorial system, there are a lot of

very delicate responses you have to determine and recently, by using artificial

intelligence, this type of software is being developed but not yet perfected.

Morimoto: Number one, in responding to Professor Zilliox, it's not really moving from a drill

and practice type to the problem solving type or doing something new. They are

entirely different types of software and should be used on different occasions or for

different reasons. The drill and practice type of software should be used after the

students learn how to operate and then by using drill and practice, the purpose is to

fix that ability into the students; whereas the problem solving type is to promote

student thinking ability. Therefore, they are entirely different. And, in responding to

Professor Uetake's opinion about the tutorial type of software, the responses seem

quite simple, but actually they are not because, depending on how the student

answers the question, the computer has to respond and give different types of the

problems or responses; therefore, this type also requires artificial intelligence to

improve the software.

Sakitani: Sugiyama is not looking down on the drill and practice type of software. The reason

he spends so much time on this software for graphing is because he just wanted to

show that with help of computers, the student can really acquire what is said to "do

math" or "explore math." He wanted to show the importance of that and really did

that.
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Demana: Our time has run out. Let's once again join in thanking our presenters for an

excellent presentation.

End of Discussion

233 250



Discussion

Becker.

Choate:

Becker:

Sugiyama:

Becker:

of Working Group - Software Demonstrations (JAPAN):

Now that we've seen a number of very interesting software demonstrations, let's

begin this session. The purpose of this session is to comment on, raise questions and

discuss the software that we've seen demonstrated by our Japanese colleagues.

First, can I come teach in Japan? More seriously, I am very impressed with the

quality of the software I've seen. I think you have some wonderful pieces of

software and I wish we had some of it in the U.S. Particularly, I'm impressed with

the simulation software. I have the feeling that much of the software that is

developed in the U.S. is very cleverly written, but some of the mathematical content

isn't there. I'm thinking specifically now of the piece that I saw demonstrated with

the circles and decomposing circle and pieces and obviously a lot of thought went into

that and I compliment whoever was responsible for it.

At the beginning of the demonstration at this machine, we saw some software that

was coordinated with one or more of the textbooks. I wonder if our Japanese

colleagues could tell us to what extent this occurs in other or all of the textbooks that

are used in Japanese schools; that is, is the software commonly coordinated with the

mathematical content in the textbooks?

Not every textbook has software attached to it. For instance, the software we

demonstrated here in this room was made either last year or the year before and they

are now in the process of making software for the elementary school level and

eventually they will come up with more software packages.

And is the software is coordinated with the textbook.

Sugiyama: Yes, it is.

Sawada: Not only textbook companies, but many computer manufacturing companies and

software manufacturing companies are making educational software. In many cases

they sell it with the computer as a set. In most cases, the software is arranged so that

it will be adaptable to any of the textbooks, not just one.

Morimoto: Compared with the number of software packages for elementary and middle schools,
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there aren't very many available for the high school level yet. For one thing, it's

harder to make. But there is some software related to graphs that is available - right

now there are about five of them available.

Uetake: In many cases, high school teachers are not satisfied with software made by

somebody else.

Morimoto: Well, what Professor Uetake says used to be true, that the high school math teachers

used to make their own materials. But now they are beginning to understand it's

quite hard to do that and so many of them are changing to use commercial software,

rather than the ones they made for their own use.

Sawada: In my research on software use, not only for math, but any kind of software, I found

that in the elementary schools about 76% of the software was commercially made, in

the case of the middlc schools about 66%, and in the high schools, about 74%. The

rest is made by either individual teachers or groups of teachers. Further, when

teachers make or create their own software, it is considered private and their own, so

when they retire, that's the end. Further, when a teacher develops one software

package, that's it and he/she may not desire to make any more.

Morimoto: The recent trend is that the there seems to be a lot of the communication between the

personal computer users' group and, especially, in each prefecture, there are the

educational centers and around the educational centers there is a lot of communication

and teachers exchange their own programs or software. Now, regarding what Mr.

Sawada said, i.e., once a teacher makes one software and finds it's very hard and,

so, maybe doesn't want to make any more, this may be true, especially when it is of

the tutorial type, because that is very difficult However, if a teacher tries to make a

software or program just for one class unit, then it isn't considered that hard and they

try to do more.

Demana: How do your students utilize the computers outside of the classroom? Is this

common, and are there activities that might require it?

Morimoto: Using the computer?

Dugdale: Yes.
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Becker: Or calculator technology.

Miwa: Mr. Sawada has mentioned technology use in the juku. Do you know about the

juku?

Becker: Yes.

Miwa: Then we need not explain.

Dugdale: What did he say about the juku?

Sawada: There are many jukus in Japan that are adopting computers and software is used

there, outside the regular schools. And, most of the software used at the juku are of a

drill and practice type.

Choate: I'd like to get back to the subject of the teachers and the software. I think a major

problem is who creates the software. Having been in this development field for about

the last ten years I think that the Japanese are, not in terms of quality but in terms of

the process, probably about four years behind where we are in terms of how good

software is produced. Some of the best software that we have in our country is

produced by teachers and sort of makes the rounds through what's called share ware

or public domain software. And I hope that you don't lose that. And I don't know if

you have a method for letting it be known who's written good software, but I highly

recommend that you do that. I'll be glad to show anyone who'd like to see some

collection of stuff that I've just gathered that teachers have produced that aren't big

programs but they do little things wonderfully. It reminds me a lot of some of the

demonstration and simulation stuff that I've seen that you've written. And you have

them all collected in one place. We don't have that, but they're there. And I hope

that you don't discourage teachers from creating software because they're the people

that are going to be working with it and I think that you're going to find that they're a

wonderful source of ideas. The process of developing software, the one that I think

that works and is probably the best, is to come up with a prototype and play with it.

Teachers will often make the prototype. They may not polish it but they'll get the

initial seed and the initial idea. I would hope that you would give some thought to

how do you support a teacher who comes up with a good idea. Do the publishers do
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that? Do the universities do it? So I would not for a the teachers.

Moderato: Teachers are beginning to use the modum a lot so that through the telephone cable

they exchange software ideas and problems.

Kaji: The software we've demonstrated today is all closed and teachers cannot do anything

more with it. However, in the new types of software available, you purchase it and if

you know how to program, you can make changes so that you can adapt it to your

own class or use you have in mind. And this trend is beginning to grow a lot.

Miwa: In Japan, is there any association or group which provides opportunities to share or

exchange software?

Uetake: Once the Ministry of Education and Ministry of International Trade and Industry tried

to organize such an association, but it didn't work out. But right now, many

software companies are trying to establishsuch associations. The Ministry of

Education tried to evaluate and control the available software, but many software

companies are opposed to it because the Ministry of Education is responsible for

evaluating textbooks, but software is not included. They don't want the software to

be included.

Sugiyama: It seems that the teachers do not appreciate the intervention of the Ministry of

Education and so, for example, in case of the books which are required for exercise,

they have a kind of independent association, independent from the Ministry of

Education, that evaluates books for teachers. Right now the movement is trying to

form the same kind of association for evaluating the software outside the Ministry of

Education.

Sawada: Well, about three years ago the National Institute of Educational Research (NIER)

was asked to organize this kind of evaluation system, but it declined because it was

too expensive and requires a lot of people to work on it. But a new academic

information center (or something like that) has been established with the main

purpose to gather software made by individuals and evaluate it, and then try to sell it

at -, ery reasonable prices.

Uetake: Well, for the manufacturers, the educational field or schools are not a good market.
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Becker: I would like to come back to the reference to the group of people that evaluates books

for the school, and now the group that would evaluate software for the schools

(Sugiyama's remark). Who are the people who serve as evaluators? Are they

teachers, or parents, or professors?

Sugiyama: As far as evaluation of software is concerned, it's not in process right now - it's not

working yet. As for the books which are required for exercise, if it's for elementary

schools, then elementary school teachers do the evaluation; and for the middle

schools, middle school teachers are involved and maybe one or two college

professors as advisors.

Nohda: In Japan, software for educational purposes is not very highly evaluated or

appreciated. If it is for engineering, then they are very highly evaluated and thought

well of. How about in the states? Oh, let me clarify. It's not the software that's not

highly evaluated, rather the job of making software is not highly regarded within the

mathematics field. Making good educational software is not a highly regarded

occupation whereas it might be in an engineering or information technology field.

And if anyone knows about this situation in the U.S., I'd like to hear about it.

Dernana; There are some attempts at the university level, for example, recently to have . di ware

evaluated for purposes of promotion and tenure. A little bit of that's been going on,

not a great deal, and it depends on where you're at in the university level; for

example, certain schools would reward very highly production of software, writing

textbooks, but others don't. It's a mixed situation in our country. I think the more

prestigious the university, the less likely they are to reward that kind of activity, but

there is some.

Miwa: Thank you very much. Probably there are still more comments and questions, but,

unfortunately, our time is up, so we have to finish this discussion. I thank you for

your kind cooperation.

End of Discussion of Working Group
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WHERE DO FUNCTIONS COME FROM?

DATA ANALYSIS IN SECONDARY MATHEMATICS

Dan Teague

North Carolina School of Science and Mathematics

The depth of coffee in an urn being emptied at a constant rate is given

by D = (5.2 .0082t)2 where t is measured in seconds and D in

centimeters. What is the depth after 135 seconds. When will the urn be

empty?

The temperature of a hot cup of coffee cooling on a table is given by

T = 180e -.012s + 76, where t is measured in minutes and Tin degrees

Fahrenheit. When will the temperature be 105 degrees?

The average score on the SAT test (S) is a linear function of the

percentage (P) of students in a state taking the test. If S = 2P + 1015,

what score would you predict for a state with half of its students taking

the test? If the average score for a state with 65% of its students taking

the test is 900, is it doing well or badly on the test?

Questions similar to these appear in all secondary mathematics textbooks. In each

question, the students are given a function which describes a relationship between variables of

interest. From where do such functions come? How are they determined? What mathematics is

needed to derive these equations, find what technology is required to assist in theirdiscovery?

The secondary mathematics curriculum focuses primarily on the algebra of the elementary

functions. Students learn to graph and manipulate equations involving linear, quadratic, power,

exponential, logarithmic, and trigonometric functions. Their study is often accentuated with

applications, in "real world" situations similar to the examples above, of the functions and

techniques under consideration. In these applications, the students are given the functional form

describing the relationship involved in the application. Secondary students in mathematics rarely

have the opportunity to use their knowledge to develop functions that describe the world around

them. Questions such as: How does the time needed to fill a coffee cup depend upon the depth of

the coffee in the urn? What function best describes the relationship between the temperature of the

coffee over time if it is left out to cool? How much does the state of North Carolina need to
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improve its SAT scores, given the percentage of students taking the test? How have the

educational programs affected the spread of AIDS in North Carolina? What is the best group size

to use when pooling blood samples to test for the presence or absence of a certain characteristic?

How can the maximum population be predicted for a logistic growth model? All of the questions,

and many others similar in nature and depth, are appropriate for study by secondary mathematics

students. The, mathematical tool which must be added to the present curriculum is the tool of data

analysis. The computational tool required is a computer and graphical data analysis software, such

as a spreadsheet. Adding these tools to the curriculum dramatically alters the questions it is

feasible to consider and the manner in which students use their knowledge and understanding of

mathematics. By using their mathematical knowledge and some techniques of data analysis, high

school students can see the interplay between the mathematics they study and the phenomena being

modeled by that mathematics in many different areas of human endeavor.
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Figure 1 shows a data set from the Raleigh, North Carolina newspaper, The News and

Observer. It illustrates the average Scholastic Aptitude Test (SAT) score by state in 1990 plotted

against the percentage of students taking the test. What information is stored in this data? Which

states are doing well? Is a state with an average score of 1000 doing better than a state with an

average score of 950? The data looks reasonably linear. By fitting a regression line to the data

with a graphing calculator, students see that the relationship S = 2.11P + 1015 gives a

description of the general trend in the data What does the slope of the regression line represent?

The effect of increasing the percent of the student population taking the SAT by one unit is an

expected drop of approximately 2.11 points on the state average score.

Figure 2 is another plot which sheds significant light on a set of data It is called the

residual plot. The residual plot is the set of ordered pairs (x,y fit), and represents the errors

between the fitted y-values and and the actual data By looking at the residual plot, however, we
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can see that a state which has an average score of 950 with 65% of its students taking the test is

actually doing better in this regard than the state with an average score of 1000 with only 12% of

its students taking the test. The residual plot in this case removes the effect of the percent taking

the test. These two plots effectively turn the data into information. As we shall see, analysis of

the residuals tells us much about the data and about our fit.
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Students experience phenomena that can be described by the elementary functions every

day. Each of them has at one time or another filled a cup from an urn. They can quickly tell

whether the urn is nearly empty or full, without looking inside. If they are in line to get a cup of

punch, the experience of the first in line is much different from that of the last. The first fills his

cup much more rapidly than the last. What is the relationship between the depth of fluid in the

urn, and the time that it takes to fill a cup (Figure 3)? It is a linear function only if the experiences

of the first and last are the same. If not linear, then what? Another example comes from the

cooling of a cup of coffee (Figure 4). Compare the two graphs. Do they represent the similar

functional relationships? Does the coffee cool as aquadratic, or exponential, or inverse-square?

How can we get information about the nature of these phenomenon? Such everyday experience

can be modeled nicely with the functions students study in secondary school, and students observe

and experience them every week.

Consider first the process of filling the cup. If this phenomenon represents quadratic

behavior, how could we tell? Could it be represented by D =at2. Why or why not? How about

D = a t2 + b? Or perhaps D = a (t + b)2 ? If we argue that D = a (t + b)2 is a reasonable guess,

how could we verify it? How is it possible to approximate the values of the parameters a and b?

If D = a (t + b)2 then what is the character of the graph of NO against t ? If we were to graph

(T, 0) rather than (t , D) , what would we expect to see? Figure 5 describes the square root re-

expression. The linearity of the re-expression argues for quadratic behavior of the phenomenon.
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The line Y = .005t + 3.52 with Y = NM describes the relationship between time since opening

the value and the depth of the coffee in the urn. The model to use then is D = + 3.52)2 .

Graphing this function against the original data shows an excellent fit (Figure 6).

5
415 vs t

Figure 5
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D = (3.52 .00502
Figure 6
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How does th_s re-expression work? By graphing the square root of D, the vertical scale of

the graph is altered. Each D-value greater than 1 is pulled down, but the larger values of D are

altered more than the smaller D-values. The square root re-expression pulls down more on the

large values than on the small ones. This action tends to straighten out the curve.

Such linearization of data is nothing more than an application of the ordinary composition

of functions. In every algebra class, students are taught that f-1(f(x)) = x, over the domain off.

In the case of linearizing data, what is desired is a Lind of "pseudo-inverse", a function g where

g(frx)) is reasonably linear. That is, is it possible to find a function g so that g(f(x)) = mx+b?
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Figure 7
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Once g is known, (in this example g(x) = 43F, it is then possible to solve for f, the function

representing the phenomenon of interest. If g(f(x)) = mx+b , then f(x) = g -1(mx+b). It is then a

simple matter to graph f(x) = g-1(mx+b) against the original data and consider the residuals to

determine the quality of the fit. This application of the composition of functions is very powerful

and is an excellent motivation for learning to work with both compositions and inverses of

functions. It is also possible to re-express the independent variable so that the re-expression

f(g(x)) = mg(x)+b is linear. At times, as with log-log re-expressions, both the dependent and

independent variables are re-expressed to linearize the data.

Now look at the cooling problem from Figure 4. Like the previous data set, the graph is

decreasing and concave up. Is the cooling of the coffee also an example of quadratic behavior?

This example differs from the previous in that there is clearly a vertical shift as well as ahorizontal

shift. Since the coffee will cool only to the temperature of the room in which it sits, the vertical
shift represents the ambient temperature, in this instance 78°. Could cooling be represented by

a(t-b)2 + 78? If so, then (4-11"-78 ) should be reasonably linear. Graphing this re-

expression shows that it is not linear, which argues that the phenomenon isn't quadratic in the

form given. Could this decreasing curve be represented by T =9---2+78, the inverse square

relation. Consider the equation (T-78) = Taking the natural logarithm of both sides gives

In (T-78) =1n ) which implies that In (T-78) = ln(a) - 2In(t). The graph of the data set

an(t), ln(T -78)) should then be linear with a slope of -2. Notice that all power functions y=axn

can be reduced through this log-log procedure to lines with a slope of n and a y-intercept of ln(a).

Figure 8 illustrates this log-log re-expression. The phenomenon doesn't appear to be behaving as

a power function. If it is not a power, could it be an example of exponential decay?

If the relationship is exponential, then T= Ae-ki +78. Subtracting 78 from both sides gives

the equation (T-78) = Ae-ki. The equation can be rewritten by taking the natural logarithm of both

sides. This operation yields In(T-78) = ln(Ae-kt) which generates the "linear" equation

ln(T-78) = -kt + In(A). Therefore, the graph of (t, In(T -78)) should be linear with a slope of -k.

This semi-log graph is shown in Figure 9. As this re-expression appears reasonably linear, the

cooling process can be described as an exponential phenomenon.

243 260



4.1

2.5
2

ln(T-78) vs ln(t )

Figure 8

5

4

2
10 70

ln(T -78) = .024t + 4.293

Figure 9

The fitted line is Y = .024X + 4.293 where Y = ln(T-78) and X = t. This implies that

ln(T -78) = .024t + 4.293. Exponentiating both sides and solving for T generates the expression

T 78 = (e- .024')(e4.293) T = 73.3e-.024t + 78 as our model. It appears that the temperature of

the hot water has a decay rate of approximately 2.5% per minute and a terminal temperature of
approximately 78° F.

In all of the data sets seen so far there was quite a lot of variability in the response variable.

When introducing students to data analysis and the techniques of re-expression, there is a great

need for interesting, yet clean data sets with a high ratio of signal to noise. Such pristine data sets

help the students to see clearly the effect of simple re-expressions and aid in the interpretation of

the information about that transformation given by the residuals. The greater the variability ofthe

data, the more difficult for the beginner to judge the effects of the transformations. Coupled with

this is the desire to give students interesting and challenging "real world" problems. The

introduction of graphing calculators into the secondary curriculum offers data sets with the desired

characteristics.

An exceptionally good source of data comes from the approximate solutions to the

traditional max-min problems generated with computer and calculator tools. Consider the standard

problem of finding the minimum surface area of a right circular cylinder of fixed volume, say

314 cc. The equation needed, A = 2nr2 + rV is readily derived by secondary algebra students.

The students can then approximate the minimum value by employing a spreadsheet to create a table

of values or using a graphing calculator. Either way, an approximate solution of r 3.68 is

quickly found. The right circular cylinder with a volume of 314 cc which has the minimum

surface area has a radius of approximately 3.68 cm. Typically, the problem ends here. However,

the investigation can be extended. If the volume war doubled to 628 cc, would the radius also

double? For each specific volume, a particular radius will minimize the surface area. Clearly, the
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radius which tninitnins the surface area is a function of the given volume. But what function?

What is the relationship between volume and radius which minimizes the surface area?

To find out, assign each student one or two specific volumes to find the radius which

minimizes the surface area using the approximating techniques appropriate for graphing

calculators. The assigned volume and the resulting solution for the radius becomes the data set

(V, r). What does this data set look like? (See Figure 10)
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The question before the students is, 'Do you know a function which looks like this?"

Students will generally guess a square root function, r = a 4V. If the function is, in fact, a

member of the square root family, then graphing either the ordered pairs (V, r2) or (4-17, r) should

linearize the data Below is the re-expression r) chosen by my class (Figure 11). The

transformed data clearly has less curvature and the correlation coefficient is a healthy .991, but is

the data linear?
An analysis of the residuals yields a great deal of information about the fit. The residual

plot (Figure 12) shows a group of data points below the line y = 0, another group above, and a

third group again below. This pattern in the residuals is the result of a line being drawn through a

curved set of data. A line will partition a curve into three distinct sections. The pattern created by

this partition will give evidence to the nature and direction of the curvatire. Detecting such

patterns is the key to linearizing data. This residual plot indicates curvature which is concave

down in the re-expressed data. As that was the concavity in the original data set, the re-expression

as a square root is not sufficiently strong to linearize the data. It is necessary to try a re-expression

which is stronger than the square root. One such re-expression is the fourth root.

If the function is a fourth root function, r = a V1/4 , then graphing either (V114, r) or

(V, r 4) should produce a linear graph (Figure 13).
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Although the correlation coefficient for the re-expression (V1/4, r) is .997, the residuals

(Figure 14) indicate a poor fit from the re-expression. However, this re-expression has altered the

concavity of the data. The residuals demonstrate this clearly.

The 1i2 power was not strong enough, leaving the transformed data concave up; but the

1/4 power is too strong, creating a transformed data set that is concave down. The linear re-

expression, then, must lie somewhere between the two. The cube root is the most obvious next

choi^le. (Figures 15 & 16)
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The graph of the re-expression (V113, r) appears quite linear. Since the residuals support

this linearization, the equation r = .542V1/3 + .003 can be used as our initial model, although we

need to reconsider the y-intercept of .003. It should be noted that the correlation coefficient for
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this model is .999, only marginally better than the previous value of .997. However, comparing

residual plots for the cube root model and the fourth root model gives dramatic evidence for the

cube root model.
One must always decide what to do with the y-intercept generated by the fit, is it real or a

residue of the fitting process? Arguing that zero volume should result in a zero radius, we

conclude that the radius-intercept of .003 -) 0 and our model for the relationship between V and r

is the simpler power function r = .542V1/3. It is interesting to note that, from calculus, we

find that if A = 2=2+2 VIr, and dAldr = 0, then r = (V12n)113. As expected, then

(1/2701/3 .5419.

Another perhaps even more powerful example comes from a problem in testing blood for

the presence or absence of a particular trait (Meyer). Suppose that you have a large population that

you wish to test for a certain characteristic in their blood. Each test will be either positive or

negative. If the blood could be pooled by putting a portion of, say, ten samples together and then

testing the pooled sample, the number of tests could be reduced. If the pooled sample is negative,

then all the individuals in the pool are negative, and we have checked ten people with one test. If,

however, the pooled sample is positive, we know only that at least one of the individuals in the

sample will test positive. Each member of the sample must then be retested individually and a total

of 11 tests will be necessary to do the job. The larger the group size, the more we can eliminate

with one test, but the more likely the group is to test positive. The larger the value of p, the

smaller the group size should be. Ignoring any Diophantine aspects to the problem, the

relationship between the number of tests (7), the size of the population (N), the probability of

testing positive for each individual (p), and the group size (k) is given by

T= N/k + (N1k)(1-(1--p)k)k = N(1 /k + (1-(1--p)k). Considering T as a function of k with fixed

parameters N and p, it is interesting to consider the relationship between p and k which

minimizes 7'. From calculus dT/dk = N(-11k2---(1-p)k In(1-p)). If dk = 0, then -1/k2

In(1--p)(1-p)k. The desired variable k is both algebraic and transcendental in this equation. An

approximate solution to this problem can be derived at the precalculus level by utilizing the

technology of the graphing calculator and techniques of data analysis. By using the calculator to

approximate the value of k which minimizes T for various values of p, a table similar to that below

can be constructed:

p .3 .25 .2 .15 .10 .05 .04 .03 .02 .01 .005 .001 .0005

k 2.7 2.8 2.9 3.2 3.8 5 5.6 6.3 7.6 10.5 14.9 32 45

Look at the graph in Figure 17. As expected, asp approaches zero, the size of the group
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increases rapidly. Students can argue for a vertical asymptote at p = 0. Could the relationship

between p and k which minimizes T be a simple reciprocal function?
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The graph of (lip, k) (Figure 18) has a different curvature from the original data set. What

is needed is some form of reciprocal function which is not as strong as 1 /p. Consider the re-
expression (11,5, k). From the graph of the re-expressed data (Figure 19), it is clear that this re-
expression linearizes the data. We can use k=114i; + 0.7 as our model relating the probability

p to the group size k. This model is graphed against the data in Figure 20.
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One problem from the precalculus final exam concerns the following data set. It shows the

number of reported cases of AIDS in North Carolina every six months since 1982.
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It is easy to show that the first four years of the epidemic can be reasonably described by

exponential growth, while the last four years are fairly linear. This is a good example of a piece-

wise phenomenon. The characteristics of the disease seem to have been altered by the educational

programs begun in 1984 which seem to have altered the characteristics of the growth ofthe disease

by 1986.

In a final precalculus example, the table below illustrates a portion of a wind chill table

from the World Almanac. The table is used to determine the wind chill index as a function of the

velocity of the wind in miles per hour and the temperature measured in degrees Fahrenheit. By

fixing the velocity of the wind, students fit linearmodels to the rows comparing the actual outside

temperature and the wind chill temperature. For a wind velocity of:



5 mph

10 mph

C = 1.058T

C = 1.164T

- 4.650

- 22.86 Wind
1,1

Tips
dogrous

30 30 21 20 10 10 3 0 -6 -10 -15 -20 -23 -.30 as -40 .44

15 mph C -4: 1.343T - 31.34 5 33 27 21 16 12 7 3 -5 -10 -15 -21 -26 -.31 26 -42 -47 -52

10 22 16 10 3 -3 -9 -15 -22 -27 -34 -40 -46 -52 -SS 44 -71 -77

20 mph C -2.= 1.425T - 38.46 15 16 9 2 5 -11 -18 -25 31 -38 -45 -51 -58 -65 -72 -78 -85 -92

20 12 4 -3 -10 -17 -24 -31 -39 -46 -53 -60 -67 -74 -81 -88 -95 -1C3

25 mph C = 1.425T - 38.46 25 8 1 -7 -15 -22 -29 -36 -44 -51 -59 -66 :74 -81 -88 -% -1C3 -110

30 mph C = 1.521T - 48.10
30 6 -2 -10 -13 -25 -33 -41 -49 -56 -64 -71 -79 -86 -93 401-109 -116

35 4 -4 -12. -20 -27 -35 -43 -52 -58 -67 -74 -82 -89 - 97.105 -113 -121

35 mph C = 1.551T - 50.71 40 3 -5 -13 -21 -29 -37 -45 -53 -60 -69 .76 -84 - 92.103.107 -115 -123

46 2 -6 -14 -22 -30 -38 -46 -54 -62 -70 -78 5 -SZ3 -1= -109 -117 -125

40 mph C = 1.573T 52.49

45 mph C7--*- 1.586T - 53.76

By fitting the linear models, the students created two new data sets, with the independent

variable being the wind velocity and dependent variable the slope and y-intercept of the regression

line.
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Fitting these data gives a multivariate prediction model of wind chill temperature as a function of

both wind velocity and actual temperature of

C(w, T) 1 (1.623 - .829e-07w)(T) + (70 316e--.066w -- 57.5).

As described abov , data analysis provides a wonderful motivation for and application of

the topics in precalculus. But what happens when the student enters the calculus class? Once the

student enters the calculus class, data analysis takes on an even greater role. The students can
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investigate all of the data sets generated in precalculus from a new perspective. In precalculus,

students learned that functions can be defined by its data set. In calculus, they learn that functions

can also be defined by how the data set changes. To study the changes in the data, a new data set

is derived from the original. To derive the new set, replace each y-value with the local average rate

of change of the function. That is, replace yi with ": 1-1 Y . This value is called the

symmetric difference. Since the first and last data points do not have values on both sides, the

original n data points generate a derived set of n-2 data points. When the derived data sets are

compared to the original data sets, something exceptional happens. Every quadratic data set

collected in precalculus generates a linear derived data set. Every exponential data set generates

another exponential data set. The derived set is characteristic of the original data set. It doesn't

take students long to decide that if they know what the derived set is, through the usual re-

expression techniques of data analysis, then they also know, up to a constant, what the original

data set is.
For example, the data set which came from minimizing the surface area of the can. Our

precalculus analysis determined the relationship to be r = .542V1/3. If we generate the derived set,

we have the data set shown in Figure 23. By re-expressing the data, we see that the derived data

set is a negative two-thirds power function. The average change in a cube root function seems to

be a negative two-thirds power function! Furthermore, the coefficient of the new function is

approximately 1/3 of that of the original. Suchobservations are an excellent way to motivate the

basic differentiation formulae.
Similar results can be generated from all of the data sets in the precalculus course. After

generating these approximate results and making conjectures about the relationship between the

original data set and the derived set, the conjectures can be verified with the development of the

traditional differential calculus.

A r
AV vs V

Figure 23
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One of the data sets previously considered from precalculus is that of hot coffee cooling on

the table. By re-expression the data with (t, ln(T- C)) and considering this semi-log graph, it was

argued that the cooling process could be reasonably modeled by T = Ae-la + C . This, of course,

is known as Newton's Law of Cooling. However, in order to obtain this result at the precalculus

level, it was necessary to have a good estimate for C. In the previous example, the coffee was left

in a room for several hours to allow for a good estimate of C. The semi-log re-expression is

useless if the student cannot remove the constant prior to using logarithms. In the calculus course,

such extensive data collection is not necessary. In the derived set, such constants are irrelevant.

The derived set for the cooling data is a negative exponential function which is asymptotic to the

x-axis, and is easily linearized. The initial condition gives back the vale of C.

As a further example of this, consider the logistic curve P 11+Be -mkt). In this particular

case, let M =1000, B = 39, and k = .001. Such a function can be linearized with the re-

expression (t, ln( ). However, the value of M must be known to accomplish this linearization.

Suppose, however, that the data at hand is the portion of the logistic curve seen in Figure 25 and

the goal of the data analysis is to estimate M. The logistic curve is also defined by the differential

equation dPIdt = kP(M -P). This means that the graph of the symmetric differences, approximating

d P/dt, plotted against P should be quadratic. Furthermore, the graph the ratio of the symmetric

differences to P, 91L , graphed against P should be linear, since9k = kM - kP .

If we generate this re-expression, we should be able to approximate both k by considering the

slope, and then M by considering the y-intercept. This re-expression is shown in Figure 26.

620

a 000

aa

-.5 5

Pvst

Figure 25

1

0.4
0 600

--.00103P + 1.00939

Figure 26

Notice that the slope of -0.00103 implies that k = -.001 and the y-intercept 1.00939 = kM

implies that M = 1000.
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It should be clear from the examples given above that computer tools are essential for

utilizing the power of data analysis in the curriculum. To be proficient at data analysis as described

here, students must have firmly in their mind the shapes of the elementary functions and how

translations, reflections, and compositions affect them. They achieve this familiarity by seeing

computer generated graphs every day in class and graphs generated by graphing calculators in the

evening. Students are constantly sketching graphs by hand to illustrate their qualitative behavior.

Access to these graphing tools is essential.

In addition to the graphing tools, data analysis tools must be available. This need not be a

specialized data analysis software package, any spreadsheet that allows the graphing of data will

suffice. Although the graphing calculators will perform the data analysis, they are presently too

cumbersome for extensive work in data analysis.

Data analysis adds tremendously to the student's understanding of functions. Itoffers the

students a tool with which to approach the unknown world around them, but it requires the

computational aid of a computer to successfully re-express and linearize the data. By combining

the techniques of data analysis and the power of graphical software tools, with the traditional study

of secondary algebra, students will see very clearly where functions come from!
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Discussion of Mr. Teague's paper:

Sugiyama: Thank you Mr. Teague for your very interesting presentation. Now I will open the

discussion session.

Hashimoto: I found your presentation very interesting, especially the data and using the graphing

calculator to solve the problems was very interesting. Now, there are two points I'd

like to ask: (1) concerns the function to find the relationship in the varying data It

seems like you as a teacher already have the given relationship between this and that.

What changes is according to what is given, and the varying data are already given.

Would it be possible for the students to find the relationship, not just the relationship

between two given data sets, but the data themselves? (2) concerns the problem

given by the teacher, so the teacher found the interesting phenomenon and then gave

this as a problem to the students. Now, is there any possibility, from the students'

side, of finding some interesting phenomenon or problems from their daily life and

presenting them?

Teague: Yes, the problems I presented, the data that I showed you, were data that students

collected. We asked the question about getting coffee from the urn, for students it's

punch from the urn. And they all have recognized that if you're there last it takes

longer to fill your cup. They've never thought about that in terms of linear functions

or non-linear functions, so they haven't tried to describe the phenomenon , so I

phrased the question, how could we decide what it is? Some of them decide to take

the data set that I used, which is depth versus time, they just open it and measure

how deep it is as time goes on. Others take a cup and measure how much time, how

long it takes to fill one cup, two cups, three cups, and so they would have the inverse

function from the one I showed. But either way, it's the students' decision as to

what they want to measure. You're right. I posed the phenomenon but the goal of

the course, one goal of the course, is for students to be able to pose their own

questions. And the example of the wind chill table is an example of that. That's a

problem a student brought in. They found the table in the Almanac and they asked

can we find out what's going on, or how can we describe these numbers? So, early

in the course, the teacher poses the questions because the students are just learning.

Later in the course, we hope the students will pose their own questions and answer

them.
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Uetake: When talking about this relationship between the temperature and the depth of the

urn, who gave that data?

Teague: That was data that the students collected. For homework I had them each go and put

a thermometer in the hot waterheater and watch it for an hour, and then bring that

data in.

Choate: At my school we use the materials that have been developed in Mr. Teague's school

and we've done this experiment a lot with students. A question that naturally arises is

does it make any difference what kind of cup you have? Why do the fast food

companies package things differently? And we've actually taken field trips where I

take an entire class down to Dunkin Donuts and we do experiments. I think thepoint

is that the mathematics gets out of the classroom and the students enjoy it. And

we've found that using these experiments that the students suddenly begin to realize

that this is not just something that you do in a classroom but there are things you can

find out using this method and we've had great luck with this experimental approach

of collecting data and trying to find patterns.

J. Wilson: Dan, I understand the point that it's the students' problem. The students are

gathering the data But, it's your problem. To what extent do you have problems

where the students have really formed the problem? Hey, let's organize and gather a

bunch of data on this? That's one question. The second question is that it's easy to

believe that this works with Dan Teague. I wonder what experience you've had with

how well it works with the whatever this concept of "average teacher" means fifty

miles down the road?

Teague: The students fairly often will come up with problems on their own. Again, it's more

a phenomenon later in the course once they get comfortable with looking at data, but

often times it's an extension ofsomething that we've done rather than something

that's totally new. I had a group of students compare McDonald's, Burger King's

and Hardee's coffee cups by looking at slips of similog lines and sort of taking five

of each and averaging the rate of heat loss. I've had them filling up a balloon 1.rith air

and let it go to examine the time that it stays in the air as a function of the

circumference which tends to be cubic, as you might suspect. Measuring the

temperature inside a car with the windows closed in the summer. That tends to be

exponential. But those are examples of problems students just did and brought into
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class to share. About regular folks, we have had our course used in a lot of different

areas, but the course is the kind that is used generally by teachers like Jon Choate

who are very good and very free at taking risks. And so we don't have much

experience with teachers that would, we have experience with schools that are more

normal but not teachers that are more normal.

Demana: Dan, I know you have to worry about evaluation of students. All teachers do, and

they tend to also generally ask some regular questions. Would you speak to how

your students do on what one might call ordinary kinds of questions having had this

kind of approach?

Teague: They are generally bored with ordinary kinds of questions. They like the exploration.

Not all students, some students like to remember mathematics rather than think

mathematically. But in large part our students enjoy the challenge, particularly when

there's a question like the wind chill question when I haven't a clue, they have, no

one knows and the goal is to see what we can say. And it's really a difference in the

end product of knowing the mathematics and being able to do it and an end product of

being able to use the mathematics. And our goal is that second one, to be able to use

it.

Darnarin: Dan, it seems that a lot of your problems demand that students engage in indirect

reasoning unlike some of the other examples that we've had where they have to deal

with if relationship A holds, then B holds; not B, therefore not A. And the data, the

research data tell us that's pretty challenging; it tells us that that's often difficult for

many students and I wonder if you have to teach that or if kids just catch on to that

way of reasoning after multiple exposures?

Teague: It is hard for students but it's something that we do consistently from the first because

I think it's important. It's an important skill for students to have, to think, when you

approach a problem you look at what you know, how does what you know fit what

you've got? You make a conjecture. And ther you say if I'm right, what should

happen? And does it happen? It's also important to realize that sometimes you don't

know. At the end of the process you still don't know. That it is not something that

we can do. And I think that it's important for students to realize that in not every data

set you can find some sort of functional, simple functional relationship. But it is

something we have to teach. And you work at it and again as I said, it's much more
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teacher-directed in terms of how you, how would you progress at this, what would

be your first thought? Your second thought? Towards the end goal, in the paper I

gave a set of the AIDS data for North Carolina and that set of data was on the final

exam and the question is what do you see? What would you do with this set of data?

How would you approach it? They don't have the tools to do it, but what I want to

know is what, you know, what would you do? What would you expect to see?

What would you be surprised to see? Often that's the best question. What would

really shock me?

H. Wilson: I'd like to get back a little bit closer to what Frank Demana asked earlier. If we have a

national curriculum in the United States I think an example of it would be the AP

calculus syllabus. How does this fit in that contextand whether or not these students

have any success therein? I assume it's a calculus course that they would take for the

AP calculus.

Teague: We have been forced not to teach AP calculus as a result of teaching precalculus this

way. We have changed, next year we will teach no AP calculus whatsoeverbecause

the difference in the courses was so dramatic. No teacher wanted to teach calculus.

There were students who wanted to take AP calculus but by and large the students,

it's a very different kind of thinking and it's almost like once you open the gate and

allow students to put part of themselves into a problem, it's very difficult to then

close the gate and say you simply have to remember there are rules to learn and rules

to apply. And we don't know how that's going to pan out in the long run, but we

will not, we won't teach an AP calculus. Students can still take it and we will be

interested in how well they do, but we don't know that yet.

Kaida: I think you'd better explain what AP calculus is.

Teague: AP calculus is a standard college calculus curriculum so that a student who takes

calculus in high school can receive college credit, university credit by taking and

doing well on the AP test.

Becker: Is there time for one more question? Thank you. Dan, I missed the very first part of

your talk, for which I apologize. And maybe you spoke to this, but I'm interested in

the logistics of how these problems unfold. Does the posing or the formulation of the

problem happen pretty much with you and the whole class together, and then the

?57 274



students are left to pursue it individually or in small groups as projects? How does

that occur?

Teague: That varies again as we go through the course. If I give you the first data set in the

first week and ask you what should we do, who knows, no one knows what to do.

And so early on I give examples of what we could think, what do we know, how

could we use what we know. And so it's early on more of a demonstration, taking

students' suggestions, but often times students' suggestions don't come early on.

Later it's more, as you said, here's a situation, someone has brought in something, or

I brought in something. Is there anything interesting in it? Or it may be more

directed, try to find a certain relationship and then they, we do a lot of group work,

groups of three, where they talk among themselves and decide an approach, to say

well it could be ;-,ational or it could be exponential. And if it's rational we should do

this, if it's exponential we should do that. What do we do first, what's the more

likely? And then we come together and try to find out what people have found out,

what people thought were interesting.

Becker: Do you think we should stop the discussion for a break now?

Teague: We can talk at the break, or is there another question?

ICaida: The Japanese also use this kind of approach, the giving of the data and finding

whether it's on a curve or a straight line and then find out the equation for that. The

similar thing is done in the study of statistics as well, so do you find any relationship

between them and how do you relate that?

Teague: The process is the same, the focus for us is on the function and the interaction of

functions and so our point of view in the process is as a motivational tool for helping

students learn about and wanting to, developing an interest in learning about

functions.

Sugiyama: Thank you. We have no time left, so we need to close the discussion.

End of Discussion
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THE USE OF COMPUTERS IN SCHOOLS: SOME OF THE FINDINGS

FROM NATIONAL AND INTERNATIONAL SURVEYS

Toshio Sawada

National Institute for Educational Research

Tukyo, Japan

Introduction
The extent of the use of computers in education in Japan, particularly in elementary and

secondary schools, has been rather limited, although experimental projects on the use of computers

for CAI/CAL in schools have been undertaken for more than 20 years mainly by researchers and

professors at universities. The low use rate is partly due to the fact that up to now in the official

school curriculum, (i.e., the Courses ofStudy issued by the Ministry of Education), computers

have not been treated as a part of the teaching content except for the curriculum ofvocational upper

secondary schools. So only a limited number of schools have been using and giving instruction

aT 'out computers.

With the rapid development and extensive use of computers in society and in business, in

particular, a need has come to be felt to introduce computers into education and to give instruction

about computers as well as to make use of them for other than administrative purposes. Currently,

an increasing number of schools are being equipped with microcomputers and they are trying to

make use of computers for the improvement of instruction and to teach students about computers.

Various surveys including the one coorrlinated by the International Association for the Evaluation

of Educational Achievement (lEA) have been conducted to find out the present situation and trends

in terms of the use of computers in elementary, lower and upper secondary schools. Some of the

results will be discussed in the following sections. The data quoted below without named sources

are from the results of the national surveys conducted by the Ministry of Education, Science and

Culture (1991).

1. Some of the Results from National Survey

1-1. Availability of Computers in Schools
How many computers do schools possess? As shown in Table 1, according to the national

surveys conducted in all Japanese public schools by the Ministry of Education, Science and

Culture, 0.6% of elementary schools, 3.1% of lower secondary schools and 56.4% of upper

secondary schools had more than one microcomputer in 1983. In 1990, these figures increased to

30.9%, 58.9% and 97.8%, respectively. This increase was achieved partly because of the
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measures taken by the Ministry of Education to facilitate the introduction of computers in view of

the emerging need to prepare students for the forthcoming information- oriented society. Tite

Ministry started to subsidize the purchase of computers by public schools in 1985. Subsequently,

in line with this, local governments have also been encouraging the introduction and use of

computers in schools through their subsidy systems.

Table 1 Diffusion Rate of Computers in Japanese Public Schools

Elementary

Schools

Lower Secondary

Schools

Upper Secondary

Schools

May 1, 1983 0.6% 3.1% 56.4%

Oct. 1, 1985 2.0 12.8 81.1

March 31, 1987 6.5 22.8 86.3

March 31,1988 13.5 ( 3,337) 35.6 ( 3,748) 93.7 ( 3,925 )

March 31, 1989 21.0 ( 5,172) 44.8 ( 4,740) 96.3 ( 4,035 )

March 31, 1990 30.9 ( 7,600) 58.9 ( 6,229) 97.7 ( 4,090 )

Note: The figures in parentheses are the number of schools with computers.

But as shown in Table 2, the introduction of computers into schools has not progressed to

the extent it deserves, especially in terms of the number of computers installed in each elementary

and lower secondary school. As of March 1990, the average number of computers in those

schools that have computers is 3.1 computers per school for elementary schools, and 5.5 and 29.8

for lower and upper secondary schools, respectively.

Table 2 Average Number of Computers per School

Elementary Lower Secondary Upper secondary

Schools Schools Schools

March 31,1988 2.9 (9,523) 3.5 (13,199) 19.7 (77,420)

March 31, 1989 3.0 (15,505) 4.3 (20,519) 25.5 (103,014)

March 31, 1990 3.1 (23,572) 5.5 (34,069) 29.8 (121,900)

Note: The figures in parentheses are the number of computers installed in schools.
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About seventy-five percent of computers installed in schools have been purchased by

schools with the help of subsidies from both national and local government as shown in Table 3.

Table 3 Methods of Procurement of Computers ( Year: 1990 and 1989 )

Elementary

Schools

1990 1989

Lower Secondary

Schools

1990 1989

Upper Secondary

Schools

1990 1989

Purchase 77.4% 81.4% 80.1% 83.8% 79.9% 80.4%

Rental/Lease 16.3 11.4 15.0 9.2 17.9 17.1

Others (1) 6.3 7.2 4.9 7.0 2.2 2.6

Note: (1) Donations/ gifts, etc.

As of 1990, about 30% of computers installed in elementary schools are 8-bit machines,

and 13% and 18% of those in lower and upper secondary schools, respectively, are also 8-bit

machines. However, the majority of computers installed in schools are 16-bit machines and there

is an increasing tendency to install more 16-bit or 32-bit machines in schools.

Table 4 Type of Computers in Schools ( Year: 1990 and 1989 )

Elementary

Schools

1990 1989

Lower Secondary

Schools

1990 1989

Upper Secondary

Schools

1990 1989

8-bit machine 31.1% 39.9% 12.8% 19.3% 17.8% 22.5%

16-bit machine 66.2 58.3 85.5 79.3 78.6 75.5

32-bit machine 2.0 1.3 1.4 1.0 2.7 1.1

Others 0.6 0.5 0.3 0.5 0.9 0.9

Total number of

computers in schools

(23,572) (15,505) (34,069) (20,519) (121,900) (103,014)

Regarding the location of computers as shown in Table 5 , the survey showed that many

schools keep their computers in the faculty rooms or teachers' moms. However, there is a
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growing tendency to keep computers in computer laboratories, in special rooms reserved for the

teaching of certain subjects, or in multi-purpose or audio-visual rooms. One of the major reasons

for keeping computers in teachers' rooms, apart from the security factor, is that many schools

which introduce computers for the first time tend to use them for administrative or management

purposes in the beginning due to the availability of the number of computers as well as the number

of teachers who can operate computers in the schools.

Table 5 Location of Computers in Schools ( Year. 1990 and 1989 )

Elementary

Schools

1990 1989

Lower Sec.

Schools

1990 1989

Upper Sec.

Schools

1990 1989

Computer Laboratories 11.3% 9.4% 19.6% 16.5% 55.4% 49.3%

Special Rooms (1) 9.4 10.9 11.1 12.2 51.2 48.2

Classrooms 5.0 5.9 1.7 1.6 2.6 2.3

Libraries 3.7 3.6 2.2 2.6 8.6 6.9

Teachers' Rooms 69.3 66.4 63.9 63.0 59.3 55.1

Others (2) 18.2 19.5 28.4 29.9 43.6 41.4

Note: Computers are kept in more than one place, so the total percentage exceeds 100%.

(1) Such as special rooms for the teaching of science, industrial arts and home making,

and audio-visual rooms.

(2) Such as multi-purpose rooms and in-school broadcasting studios.

1-2. Software Development and Use
Which software is available in the schools? The availability of instructional software is

another necessary condition for using computers in schools. Therefore, this survey contained a

number of questions about the availability of software in the schools.

The average number of software items possessed by public elementary schools in 1990

was 24.4, and 37.8 and 105.4 for public lower and upper secondary schools respectively. The

number of software possessed by schools has greatly increased from the previous year as shown

in Table 6. However, many schools have multiple copies of the same software item, and the

number of different kinds of software, excluding multiple copies of the same kind of software,

possessed by schools is 8.4, 9.0 and 20.2 per school for elementary, lower secondary and upper

secondary schools, respectively.
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Table 6 Number of Software Items Possessed by Schools

Average Number of soft-

ware items per schools

No. of schools

with computers

( Year: 1990 and 1989 )

Elementary

Schools

1990 1989

Lower Sec.

Schools

1990 1989

Upper Sec.

Schools

1990 1989

24.4 19.6 37.8 27.5 105.4 78.5

7,600
5,172

6,229
4,740

4,090
4,035

No. of software 185,241 235,538 430,948

items processed 101,623 130,306 316,768

The results of the software items possessed by schools are presented in Table 7. Of the

software items possessed by schools in 1990, 76.1%, 66.2% and 74.2% of software were

commercial software items purchased by elementary, lower secondary and upper secondary

schools, respectively. The remaining software was either developed by school teachers or jointly

developed by teachers and local education centers.

About 68%, 66% and 57% of software possessed by elementary, lower secondary and

upper secondary schools, respectively, are for use in connection with subject teaching, whereas

the remaining software are for administrative use, etc..
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Table 7 Sources / Development of Software used in Schools

( Year: 1990 and 1989 )

Elementary

Schools

1990 1989

Lower Sec.

Schools

1990 1989

Upper Sec.

Schools

1990 1989

Teacher made 13.5% 15.0% 10.3% 23.1% 19.3% 21.4%

Joint development (1) 5.8 6.4 20.1 14.6 2.7 2.5

Commercial 76.1 73.9 66.2 59.7 74.2 68.9

Others (2) 4.6 4.8 3.2 2.5 3.8 7.2

Note: (1) Developed jointly by teachers and staff of local education centers, and by groups of

teachers.

(2) Exchange with other schools, gifts, etc.

Besides the software for use across subjects, as shown in Table 8, software for

Mathematics, Japanese Language and Science is popular in elementary schools, software for

Mathematics, Science and Foreign Languages ( English ) in lower secondary schools, and

software for Vocational Subjects, Mathematics and Science in upper secondary schools.

One of the interesting features of Japanese education is the development and the existence

of an education industry. Textbooks are developed by private publishers, although they have to be

approved by the Ministry of education. Apart from textbooks, drills, worksheets, test and

supplementary instructional materials are also developed by private publishers and used in schools,

and are also available in the market for home use.

264 2 ,c?,



Table 8 Software for Subject Teaching in Schools ( by Subject)

(Year 1990)

Subjects

Elementary

Schools

Lower Sec.

Schools

Upper Sec.

Schools

Japanese Language 10.5% 3.6% 1.1%

Social Studies 6.4 4.9 0.8

Mathematics 52.3 25.9 7.6

Science 7.7 24.4 6.2

Music 2.7 0.6 0.2

Fine Arts 2.4 1.2 0.2

Industrial Arts 6.0

Homemaking 0.1 0.9 1.1

Physical Education 0.6 0.6 0.3

Foreign Languages 0.1 13.0 1.8

Moral Education 0.04 0.1 0.02

Special Activities (1) 2.4 1.6 0.9

Vocational Subjects 0.0 0.0 49.9

Across subjects (2) 14.8 17.3 29.9

Note: (1) Such as for club activities.

(2) Word Processing, Spreadsheets; Graphics; Database; etc..

An increasing quantity of commercial software is now available in the market, but

evaluation of this is not yet systematically carried out. Although general guidelines for the

development of software have been issued by the Ministry of Education in order to ensure the high

quality of software, the selection of or method adopted for the evaluation of software is up to the

user.
Some information on the content and evaluation results of new software is disseminated

through monthly magazines and journals published by private publishers. A semi- governmental

organization established in 1986 is engaged in collecting and evaluating software developed by

teachers and schools as well as that used in pilot/experimental projects, and in making the results

of the analysis available to users.
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1-3. Curriculum
Why is it difficult to integrate computers in the school curriculum? The Courses of Study

for elementary, lower secondary and upper secondary schools have been revised almost every ten

years, and the most recent revision has just taken place. New Courses of Study will be put into

practice from 1992 for elementary schools, from 1993 for lower secondary schools and from 1994

for upper secondary schools.

In the new Courses of Study, computers are expected to be more positively used than now

in the teaching of various subjects, and computer education will be covered by such subjects as

industrial arts and homemaking in the lower secondary schools, as well as such subjects as

mathematics and science in both lower and upper secondary schools, as well as vocational subjects

in vocational and technical upper secondary schools.

According to the new Course of Study for elementary schools, it is expected that use will

be made of computers for the improvement of teaching and learning, and that through the use of

computers as an aid children will make themselves familiar with computers. But it is not expected

that the functions and operation of computers will be taught at this level.

In the Course of Study for lower secondary schools, it is expected that use will be made of

particular characteristics and functions of computers such as simulation and information retrieval

for instruction and that through such use of computers students' understanding of computers will

be deepened and necessary skills will be developed. In the subject " Industrial arts and

Homemaking ", there will be a requirement to teach the content of the foundation of information,

especially computers, to both boys and girls.

In the Course of Study for upper secondary schools, in the teaching of each subject, proper

attention has to be given to the emergence and development of an information-oriented society and

the impact of computers on individuals and society. In mathematics teaching, a new subject area

called ' Mathematics C " will be introduced to teach students about computers focusing on

computer use. The only computer-related section in the present curriculum is found in terms of

computers and flowcharts in the present "Mathematics II". Indeed, if we compare this with the

new mathematics curriculum, we see a phenomenal change.

1-4. Teachers
How many teachers can operate computers? A suggested training program has been

developed by the Media Committee of the Social Education Council and the Ministry of Education,

as well as local (prefectural) governments, have been providing interested teachers with

opportunities for in-service education in the use of computers. In particular, prefeciural boards of

education make use of their education centers or establish information processing education centers

to provide training opportunities for teachers. However, in-service teacher education provision
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varies from prefecture to prefecture. Teachers who wish to undergo training are provided with

opportunities for training on the basis of the availability of courses.

Teachers interested in the use of computers may also find their own ways of getting trained

at their own expense, as private companies provide teachers with opportunities for training on

computers. Topics covered by training courses vary from course to course depending on the

specific objectives/purpose and levels (beginner, intermediate, advanced, etc.) of courses, and the

levels or backgrounds of participants. A training course normally covers general theory and the

operation, programming and application of computers. Pre-service teacher education programs

with respect to computers also vary from institution to institution.

As shown in Table 9, according to the survey conducted by the Ministry of Education last

year, 10.1%,18.3% and 32.4% of public elementary, lower secondary and upper secondary

school teachers, respectively, responded that they can operate computers and 20.3%, 27.6% and

42.8% of those elementary, lower secondary and upper secondary school teachers, respectively,

responded that they can teach about computers. Those teachers who are able to operate computers

are teachers of mathematics, science, industrial arts and homemaking, in the case of lower

secondary schools, and those of vocational subjects, mathematics and science in upper secondary

schools.
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Table 9 Percentage of Teachers who can operate Computers

(Year 1990)

Elementary

Schools

Lower Sec.

Schools

Upper Sec.

Schools

Can operate computers 10.1% 18.3% 32.3

(No. of teachers who can

operate computers)

(44,494) (50,294) (71,142)

Can teach about computers

out of those who can operate them

20.3% 27.6% 42.8%

Japanese Language 7.7% 7.3%

Social Studies 10.0 7.2

Mathematics 20.4 17.9

Science 22.3 14.6

Music 3.4 0.7

Fine Arts 3.3 0.5

Industrial Arts & Homemaking 14.3

Homemaking 2.0

Physical Education 6.8 5.1

Foreign Languages 6.5 8.3

Vocational Subjects 34.4

Table 10 presents the results of forms of training received by school teachers. So far,

about 115,800 teachers have undergone some form of training in the use of computers, and a little

over half of them ( 56% ) received training organized by national and local government/prefectural

education centers.
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Table 10 Forms of Training received by Teachers

(Year: 1990)

Elementary

Schools

Lower Sec.

Schools

Upper Sec. Subjects

Schools

National/Local Governments 58.9% 54.7% 55.1%

University extension courses, etc. 4.6 5.8 4.9

Research Associations, etc. 14.2 15.0 14.6

Manufacturers/companies 15.8 17.9 20.0

Others(1) 6.5 6.6 5.4

Note: (1) Self-study, In-school training, etc.

2. Some of the Findings from WA Computers in Education Study

2-1. Why are schools using computers?
Many countries are facing issues about the role of computers in education. Do computers

have a place in the school? What should be their role? At what educational level should students

be introduced to computers? What should they be taught? Who should teach them? In which

existing courses can computers be used most effectively as a tool to improve the teaching-learning

process? What will be the effects of computers on students? On teachers? On the school as an

institution? These are important questions and, at present, we have little information to guide us in

answering them. The overall aim of the LEA computers in education study is to contribute to

building a knowledge base from which answers to the above questions about what and how to use

computers in education can be sought.

In 1989-90, the International Association for the Evaluation of Educational Achievement

(IEA) conducted the stage 1 survey of computers in education (COMPED) in the schools of about

20 countries, including the United States and Japan. This preliminary report presents the first

results of stage 1 of the COMPED study. Other results will appear in a research volume to be

published in 1991, in national reports of theparticipating countries, and in articles in scientific

journals,(e.g. William J. Pelgram & Tjeerd Plomp: the Use of Computers in Education

Worldwide; results from the lEA 'Computers in Education" Survey in 19 Education Systems; in

printing at Pergamon Press.1991b)
The school principals participating in this study wereasked to rate the importance of each

statement in a list of nine containing potential reasons for introducing computers in the schools.

The answer categories were: not important, slightly important, important and very important.
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The list consisted of the following statements: (1) students need experience with

computers for their future, (2) computers make school more interesting, (3) computers attract more

students to the school, (4) computers improve student achievement, (5) computers keep the

curriculum up to date, (6) computers promote individualized learning, (7) computers promote

cooperative learning, (8) the school had an opportunity to acquire computers, (9) the teachers were

interested.

In order to visualize the major trends with respect to the reasons for introducing computers

more clearly, we collapsed the answer categories " important" and "very important" and calculated

the percentage of respondents checking one of these answers. Table 11 presents the results of

these responses for elementary, lower secondary and upper secondary schools in the United States

and Japan.

Table 11 shows that at all levels the expected improvement of student achievement is

mentioned by a large majority of respondents. In elementary schools, Japanese principals reported

that their important items more than 70% were (1), (2), (4), (5), (6), (7) and (8) , while principals

of the United States selected items (1), (4), (5) and (6). In lower secondary schools, the items

more than 79% of Japanese principals were items (1), (5), (6), (8) and (9), those of US were

items (2), (4), (5) and (6). In upper secondary schools, those reported that their important items

were (1), (5) and (8) for Japan, and (1), (4), (5) and (9) for the United States. Both countries

gave their relatively lower rating to (3) computers attract more students to the school, and (7)

computers promote cooperative learning.
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Table 11 Reasons for Introducing Computers in Schools ( Principals )

Reasons Introduction

Elementary

Schools

JPN USA

Lower Sec.

Schools

JPN USA

Upper Sec.

Schools

JPN USA

(1) Experience for future 91.% 92.% 88.% 90.% 92.% 94.%

(2) Make school interesting 83. 64. 66. 63. 63. 53.

(3) Attract students 40. 8. 37. 9. 62. 14.

(4) Improve achievement 71. 79. 63. 78. 48. 76.

(5) Curriamethod up-to-date 80. 91. 73. 94. 76. 92.

(6) Individualized learning 95. 74. 84. 73. 59. 63.

(7) Cooperative learning 54. 48. 55. 47. 41. 40.

(8) Opportunity to acquire 81. 49. 80. 45. 72. 40.

(9) Teachers were interested 69. 67. 73. 67. 67. 79.

Note: JPN = Japan, USA = the United States of America

2-2. How teachers use computers?
The computer-using teachers in this study were asked to rate the frequency of use of each

statement in a list of seven containing the following approaches to using computers for your

"selected subjects (mathematics, science and mother tongue) in this class. The answer categories

were: never, some weeks, most weeks and every week.

The list consisted of the following approaches: (1) drill: students do practical exercises on

the computer, (2) instruction by computer: the software provides the actual instruction, (3)

explanation/ demonstration: the teacher explains and/or demonstrates an idea or skills,(4) testing:

students take tests by using computer software, (5) enrichment: fast learners get additional

instruction/ exercises on the computer, (6) remediation: slow learners get additional instruction/

exercises on the computer, and 0) let students explore concepts on their own. We collapsed the

answer categories " most weeks" and "every week" and calculated the percentage of respondents

checking one of these answers.
Table 12 presents percentage of teachers in existing subject using particular instructional

approaches ( mathematics, science and mother tongue teachers). Computers may be used for a

wide variety of purposes in a school. In the past, some different topologies have been presented to

characterize the major distinctions in the type of use of computers, such as learning with, learning

about, and learning through computers. Schools, however, are constrained in their use of
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computers due to a number of different factors, such as the shortage of hardware and software and

the limited availability of teacher time, etc..

Table 12 Percentage of Teachers in Existing Subject using Particular Instructional Approaches

( mathematics, science and mother tongue teachers)

Approach

Elementary

Schools

JPN USA

Lower Sec.

Schools

JPN USA

Upper Sec.

Schools

JPN USA

(1) Drill, practice 85.% 93.% 77.% 77.% 49.% 47.%

(2) Instruction by computer 18. 77. 27. 59. 40. 56.

(3) Teacher demonstrates 41. 58. 56. 50. 59. 65.

(4) Students tested 12. 29. 14. 29. 15. 18.

(5) Enrichment 31. 71. 16. 64. 14. 54.

(6) Remediation 37. 70. 24. 59. 11. 36.

(7) Students self - explore 34. 60. 27. 54. 39. 50.

Regarding the approaches to using computers, many teachers take approaches such as (1)

drill & practice for elementary and lower secondary schools in both countries. On the other hand,

in items (2), (4), (5), (6) and (7), the U.S. teachers show a relatively higher percentage than

Japanese teacIrrs.

As for the opinions and attitudes of teachers toward computers, it was found from the data

of the lEA COMPED study made in early 1989 that teachers are generally in favor of computers

and have positive attitudes and opinions about the role of computers in society as well as in

education. They tend to consider computers as a valuable tool to improve students' learning and

enhance teaching effectiveness, and they are eager to learn more about computers as a teaching aid.

However, due to the lack of systematic in-service teacher education programs on computers in the

past, most teachers, especially those who are not using computers, consider that they do not know

much about computers or their operation.
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THE USE OF COMPUTERS IN SCHOOL:

THE STATE OF USING COMPUTERS IN THE MATHEMATICS CLASSROOM

IN JAPAN

Koichi Kumagai

Department of Mathematics, Joetsu University of Education

Joetsu, Japan

I. Background and Purposes
Education with computers has been a focus of mathematics education. Whenever new

teaching approaches and technology are introduced in education, many problems arise in relation to

traditional education. Of course, many problems are now arising in mathematics education with

coming*, in relation to the purposes of mathematics education, curriculum development, teaching

methods, teacher education and so on.

In Japan, some schools have computers and others do not. Many teachers have already

used computers in teaching mathematics. Teachers are now confronted with real problems. But we

do not have enough information about problems in mathematics teaching with computers in

school. For example, how does a teacher use computers? How are computers used for

demonstration in a class, for drill and practice, and for problem solving in teaching mathematics?

Are there any influences of computers on a student's cognitive process, problem solving process,

and so on? What kind of influences are there? Now we can identify suchproblems in real

situations.
Several surveys about education with computers have been conducted in recent years, but

most of them examined the general features of education with computers in the schools. Surveys

for teaching mathematics in a classroom are rare in Japan. In this report we present the analysis of

education with computers from the teacher's point of view. The general features of school

education with computers (number of available computers, computer laboratories, and so on) and

features of teaching mathematics with computers arereported. Particularly, teaching mathematics

with computers, teachers' conceptions, and relationships between them are the focus of this report.

The teachers' conception includes the influence of computers on mathematics learning, problem

solving, and so on.

II. Method
1. Subjects

A total of 143 teachers from seven Japan prefectures (Aichi, Hiroshima, Ibarald,

Kanagawa, Niigata, Tokyo, Yamanashi)participated in the study during winter 1991. Of the total
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participants, 34 were from the elementary, 67 were from the lower secondary, and 42 were from
the upper secondary school. Table 1 shows the ages of participants.

Table 1. Age of participants

Ages

school levels

elementary

lower secondary

upper secondary

total

20 29

10

10

2

22 (15%)

30 39 40

14

42

25

81 (57%)

49 50

9

12

12

33 (23%)

60

1

3

3

7 (5%)

34

67

42

143

(24%)

(47%)

(29%)

(100%)

2. Questionnaires

Each teacher was given the questionnaires (see Appendix I) in which questions about facts
and conceptions were arranged. The facts survey included environments for computer use in
school (hardware, software, colleagues and so on: Q.3, Q.4, Q.5, Q.9, Q.10, Q.11) and
mathematics teaching with computers (software in class, usage of computers in mathematics
teaching: Q.6, Q.7, Q.8). The conceptions survey included teachers' conceptions about the
influence of computers on students' learning and problem solving in mathematics (Q.12).

III. Results
In this section, we start with the results of the fact surveys.

Table 2. User & non-user in each school level

school levels Yes No total

elementary 28 (82%) 6 (18%) 34
lower secondary 39 (59%) 27 (41%) 66
upper secondary 19 (46%) 22 (54%) 41

total 86 (61%) 55 (39%) 141
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The total number of responses was 143. There were 86 users of computers, or 60% of the

total number of responses. On the other hand, there were 57 non-users, or 40% of the total number

of responses (Table 2). ("User" means a teacher who has used computers.)

1. 1111 *1 $OH I. I It,
We divided the results of computer environments into three sections: computer

environments about hardware, teachers, and teachers' complaints about the state. Most of the result

within this section were based on the results from users'.

Table 3. Number of available computers in a school

Number
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Schools

Per Secarki7
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Hardware
Table 3 shows the distribution of the number of available computers in a school. Table 3

also shows the distribution of the number of available computers in a school. There are more than

40 available computers in 33% of the schools. Most of them are in the lower secondary school.

There are 20 available computers in 35% of the schools. 20% of the school have at most 7

available computers. Most computers (78%) are placed in a computer laboratory (see Appendix II,

Table 1).
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Among teachers

We now consider the environments among teachers. There are two questions.

Q.5 Can you get support from others when you are using a computer in your class?

1. yes (who: ) 2. no

Q,9 How frequently are you engaged in each of following activities?

1) talking generally about instructional uses of computers or educational purposes

with another teacher

2) talking about professional uses of computers, (e.g. programming, recording

grades etc.) with another teacher

3) meeting with teachers from other school to discuss the use of computers

There are three reasons: never, sometimes, and often.

In general 26% of teachers could get support from others when they used computers. In the

lower secondary level, teachers could not get much support from others; that is, only 13% (see

Appendix H. Table 2).

But most teachers (95%) had opportunities to talk about the educational use of computers.

The percentages of teachers who talk about professional uses of computer) with each other were

93%, and at least 81% of the teachers had meetings with teachers from other schools to discuss the

use of computers. Most teachers actively talked and discussed the proper use of computers for

education and teaching, as shown in Table 4.

Table 4. Communication about education with computers

often sometimes never no answer

educational uses 41 (47%) 41 (47%) 2 (3%) 2 (3%)

professional uses 34 (40%) 46 (53%) 5 (6%) 1 (1%)

have a meeting 18 (17%) 52 (61%) 15 (21%) 1 (1%)

Teachers' reasons concerning computer use

The percentages of reasons for not using computers made by non-users (n=55) is

displayed in Table 5. The main reason is that computers have not been available (29%) and that

there was not enough software for instructional purposes available (19%). Particularly, in the

lower secondary level computers have not been available, and in the upper secondary level there

was not enough software. There are not enough computers and appropriate software in schools.
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But teachers actively discuss with each other about education and computers.

Table 5. Reasons for not using computers

elementary

insufficient computers 5 (56%)

not enough software 0 (0%)

educational reason 1 (11%)

usages of computers 0 (0%)

not enough time 1 (11%)

lack of experiences 2 (22%)

others 0 (0%)

lower sec. upper sec. total

14 (34%) 7 (18%) 26 (29%)

7 (17%) 10 (26%) 17 (19%)

3 (7%) 6 (15%) 10 (11%)

2 (5%) 4 (10%) 6 (7%)

3 (7%) 7 (18%) 11 (12%)

8 (10%) 1 (3%) 11(12%)

4 (5%) 4 (10%) 8 (9%)

2. TrachingandCQmpium
We now consider mathematics teaching and computers. We divided the results of teaching

and computers into two sections: software and programs in teaching and usage of computers in

mathematics teaching.

SitEALtAnditognana
(i) Computer software used in school (Q.6)

Popular types of software which were used in schools were drill and practice programs,

word processing/desktop publishing programs, spreadsheet programs, authoring programs for

writing CAI lessons, and programs for recording or scoring tests.
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Table 6. Software used in a school

types of a software

drill and practice programs

tutorial programs

word processing/desktop publishing

painting and drawing programs

educational games

simulation programs

mathematical graphing programs

statistical programs

programming languages

spreadsheet programs

programs for recording or scoring

tests for data base

database programs

authoring programs for writing CAI

tele computing

school levels

elem. lower higher total

22 25 6 53

16 24 6 46

12 32 11 55

13 24 7 44

7 9 2 18

7 32 9 48

4 26 13 43

5 17 4 26

6 21 15 42

11 28 12 51

13 33 15 61

8 23 11 42

15 29 7 51

4 2 1 7

147 326 120 593

Table 6 shows that at the elementary level, drill and practice programs, tutorial programs,

and authoring programs for writing CAI lessons are popular. In the lower secondary level,

simulation programs were outstanding and word processing/desktop publishing programs and

programs for recording or scoring tests were also used. At the upper secondary level, mathematical

graphing programs, programs for recording or scoring tests and programming languages were

popular.

(ii) Source of programs used in the mathematics teaching

There is a question about programs; that is, "How often do you use these sources of

computer programs in your instruction in this mathematics class ?"

(1) programs that I wrote

(2) programs copied from books or magazines
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(3) software written with the school system or obtained by exchanges with other schools

(4) other commercial software

In the teaching of mathematics, the majority of teachers used program written by

themselves, programs written with school systems or obtained by exchanges with teachers of

other schools, and commercial programs, as shown in Table 7.

Table 7. Source of programs used in a teaching mathematics

original books etc. exchange commercial

many 13 (15%) 4 (5%) 11(13 %) 25 (29%)

several 26 (30%) 5 (6%) 20 (23%) 20 (23%)

once or twice 27 (32%) 22 (26%) 27 (31%) 11 (13%)

nothing 19 (22%) 51 (59%) 26 (30%) 28 (32%)

no answer 1 (1%) 4 (5%) 2 (2%) 2 (2%)

Programs written by teachers themselves and written with school systems or obtained by

exchanges with teachers of other schools were used several times or once or twice a year (63%).

The commercial programs were used frequently (54%).

Software used in schools is different across school levels. Each school level has

characteristics. There are three main sources of software in each school level.

Teaching mathematics with computers

(i) Approaches to using computers for mathematics lessons

There are questions about approaches to using computers for mathematics lessons.

Q.8 How often have you used the following approaches to using computers for your

mathematics lessons in this class?

(1) students explore concepts on their own or do practical exercises

(2) demonstration: the teacher demonstrates an idea or skill

(3) testing: students take tests by using computer software

(4) enrichment: fast learners get additional instruction

(5) remediation: slow learners get additional instruction

(6) for students to use as a tool for word processing, calculation, and database

(7) others
The percentages of teachers who use computers to let students explore concepts on their

own or do practical exercises is 85%. Teachers had many opportunities to use computers for

demonstration and for remediation: slow learners 69% and 40%, respectively. Relatively, they did
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not use for testing and for enrichment with fast learners (see Table 8).

Table 8. Approaches to using computers in the mathematics teaching

often sometimes never no answer

1) students explore 25 (29%) 48 (56%) 11 (13%) 2 (2%)

2) demonstration 8 (9%) 50 (58%) 26 (30%) 2 (2%)

3) tests 2 (2%) 17 (20%) 65 (76%) 2 (2%)

4) enrichment 4 (6%) 17 (20%) 63 (73%) 2 (2%)

5) remediation 5 (6%) 29 (34%) 50 (58%) 2 (2%)

6) word processor 10 (12%) 16 (19%) 57 (66%) 3 (4%)

7) others 4 (5%) 0 (0%) 46 (54%) 36 (42%)

The percentages of teachers who use computers to let students explore concepts on their

own or do practical exercises was high in every school level, as shown in Table 9.

Table 9. For students explore

often sometimes never total

elementary

lower secondary

upper secondary

12 (43%)

8 (22%)

5 (26%)

14 (50%)

26 (70%)

8 (42%)

2 (7%)
3 (8%)
6 (32%)

28

37

19

4-

Tables 10 and table 11 show the relationships between the school levels and approaches to using

computers for demonstration and for remediation: with slow learners.

Table 10. For demonstration

often sometimes never

elementary 1 ( 4%) 14 (50%) 13 (44%) 28

lower secondary 5 (14%) 26 (70%) 6 (16%) 37

upper secondary 2 (10%) 10 (53%) 7 (17%) 19
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Table 11. For remediation

often sometimes never total

elementary 4 (14%) 6 (21%) 18 (64%) 28

lower secondary 0 (0%) 18 (49%) 19 (51%) 37

upper secondary 1 (5%) 5 (26%) 13 (68%) 19

In the lower secondary level, the percentages of teachers who used computers for

demonstration and for remediation: with slow learners were84% and 51%, respectively.

(ii) The relationships between source of programs and approaches to using computers

Table 12 shows the relationships between source of programs which are used in

mathematics classes and approaches to using computers. When teachers let students explore

concepts on their own or do practical exercises, they used commercial programs and programs

which were written with school systems or obtained by exchanges with teachers of other school.

For demonstration, teachers used programs which were written with school systems orobtained

by exchanges with teachers of other schools and commercial programs. For remediation: with

slow learners, commercial programs were used frequently.

Table 12. The relationships between source of programs and approaches

Q7

1) 2) 3) 4)

1

Q 2

3

8 4

5

6

5 (6%) 9 (10%) 29 (34%) 43 (50%)

9 (10%) 6 (7%) 23 (27%) 31 (36%)

2 (2%) 4 (5%) 21 (24%) 14 (16%)

9 (10%) 3 (3%) 21 (24%) 15 (17%)

9 (10%) 6 (7%) 18 (21%) 24 (28%)

4 (5%) 5 (6%) 8 (9%) 16 (17%)

V 1 1 1 0 11 # 1 11 1 11 $ ,s a si t

From the viewpoint of problem solving, we now consider teachers' conceptions about the

influence of computers on mathematics education. In Q.12, there were 6 questions with three
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responses: yes, neutral, and no.

(1) By using computers, basic knowledge and skills of mathematics can be mastered.

KS [knowledge and skills]

(2) By using computers, the intuitions of a student can be fostered.

I [intuitions]

(3) By using computers, students' logical thinking can be extended.

LT [logical thinking].

(4) By using computers, students will be able to solve problems which have been unsolved by

them previously.

PPS [possibility of p-s]

(5) By introduction of computers, the nature of mathematics problems may change.

CP [changes of problems]

(6) By using computers, we may foster students' problem solving in school mathematics

SPS [student's p-s].
The total number of responses was 143. There were 86 users of computers, or 60% of the

total number of responses. On the other hand, there were 57 non-users, or 40% of the total number

of responses.

general tendencies
In questions about KS [knowledge and skills], I [intuitions], and SPS [student's p-s], the

percentages of positive responses were almost 50%, and that of negative responses were almost

10%. 50% of the teachers responded positively to the question PPS [possibility of p-s] and 20%

of the teachers did negatively. 30% responded positively and 15% negatively to the question of LT

[logical thinking].

Users and Non-users
We consider teacher's conceptions in comparing users with the non-users. Table 13 shows

that the percentage of positive responses made by the users was higher than that of the non-users,

except for CP [changes of problems]. The percentage of neutral responsesmade by the non-users

are higher than that of the users, except CP [changes of problems] and PPS [possibility of p-s].

Focusing on negative responses, the negative responses appeared in non-users' responses.

Particularly, in the questions of LT [logical thinking], the non-users had negative responses.

Furthermore, examining relationships among 6 questions made by users, there are

correlations between KS [knowledge and skills] and I [intuitions], between KS [knowledge and

skills] and SPS [student's p-s], and between I [intuitions] and SPS [student's p-s]. There are

biases between I [intuitions] and LT [logical thinking], between KS [knowledge and skills] and

CC [changes in contents], between KS [knowledge and skills] and PPS [possibility of p-s], and

between I [intuitions] and CP [changes of problems].
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[user]

knowledge and skills

intuitions

logical thinking

possibility

changes of problems

p-s ability

[non-user]

knowledge and skills

intuitions

logical thinking

possibility

changes of problems

p-s ability

Table 13. User and non-user in teachers' conceptions

yes neutral no no answer

54 (63%) 28 (33%) 3 (3%) 1 (1%)

50 (58%) 28 (33%) 3 (3%) 1 (1%)

33 (39%) 44 (51%) 8 (9%) 1 (1%)

33 (39%) 37 (43%) 15 (17%) 1 (1%)

38 (45%) 31 (36%) 15 (17%) 1 (1%)

48 (56%) 31 (36%) 6 (7%) I (1%)

yes neutral no no answer

19 (35%) 28 (50%) 8 (15%) 0 (0%)

24 (44%) 25 (43%) 6 (11%) 0 (0%)

12 (22%) 27 (50%) 16 (29%) 0 (0%)

17 (31%) 24 (44%) 14 (26%) 0 (0%)

31 (56%) 18 (33%) 6 (11%) 0 (0%)

13 (24%) 32 (58%) 10 (18%) 0 (0%)

The percentages of the former is higher than the latter. These results show consistency.

Examining responses of the non-users, there are correlations between KS [knowledge and

skills] and SPS [student's p-s], between LT [logical thinking] and PPS [possibility of p-s], and

between PPS [possibility of p-s] and SPS [student's p-s]. But there are biases between I

[intuitions] and LT [logical thinking], between CP [changes of problems] and LT [logical

thinking], between CP [changes of problems] and PPS [possibility of p-s], between CP [changes

of problems] and SPS [student's p-s]. In each relationship, the former is more emphasized. There

is no consistency with the two results for non-users (see Appendix Ill, Table 1).

school levels
At the elementary level, negative responses appeared in every question. Particularly, the

percentages of negative responses in CP [changes of problems] and PPS [possibility of p-s] made

by users are almost 33%. But at the secondary level, positive responses appeared.

In non-users, generally, neutral responses were more than other responses. There were no

non-users at the elementary level who had negative opinions. But non-users at the secondary level

had negative opinions (see Appendix III, Table 2.-Table 13).
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Through these considerations, we conclude that the users have a particular image of the

influences of computers, but the non-users have various images.

4. The relationships between teachers' conceptions and their mathematics teaching

We consider the relationships between teachers' conceptions and their mathematics

teaching. There were a total of 85 responses from users. At first we examine the relationships

between source of programs used in mathematics teaching and teachers' conceptions (see

Appendix IV, Table 1). Secondly, the relationship between approaches to using computers in

mathematics teaching and teachers' conceptions were examined (see Appendix IV, Table 2).

Source of program and teacher's conceptions
In the previous consideration, there were four following sources of programs:

(1) programs that I wrote: WO

(2) programs copied from books or magazines: CB

(3) software written with the school system or obtained by exchanges with other schools: SE

(4) other commercial software: CS

WO teachers [who wrote programs themselves] passively evaluated influences on LT

[logical thinking] and PPS [possibility of p-s]. Negative influences on PPS [possibility of p-s] and

CP [changes of problems] appeared from WO teachers.

SE teachers [who use software written with the school system or obtained by exchanges

with other schools] positively evaluated influences on KS [knowledge and skills] and I

[intuitions]. But the percentages of positive evaluation made by the group of SE is lower than for

cche group of WO teachers. Negative influences on PPS [possibility of p-s] appeared from SE

teachers.
CS teachers [who use commercial software] tend to evaluate positive influence by using

computers in general.

We could not find consistency in the teachers' conceptions through the results from source

of programs.

Approaches to using computers and teachers' conceptions

There were five approaches to using computers in mathematics teaching:

1. let students explore concepts on their own or do practical exercises

2. demonstration: the teacher demonstrates an idea or skill

3. testing: students take tests by using computer software

4. enrichment: fast learners get additional instruction

5. remediation: slow learners get additional instruction

The overall distribution of results from relationships between approaches to using

computers and teachers' conceptions was examined. All teachers positively evaluated influences on
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KS [knowledge and skills], I [intuitions], and SPS [student's p-s], and there were some negative

responses in PPS [possibility of p-s] and CP [changes of problems]. As a result, teachers'

conceptions shows consistency in the results from approaches to using computers.

There is no relation between teaching approach and teacher's conceptions. But we can

identify relations between source of programs and teacher's conceptions. That is, we can set such

assumptions that teachers who wrote programs themselves have different conceptions from

teachers who use commercial programs.

IV. Conclusions
cleneral features

(Environments)
When teachers used computers in the class, they could not get any support from others.

But teachers frequently discussed and talked to each other about educational uses of computers and

professional uses of computers. Their communication about computers was actively done.

In general, there was an insufficient number of computers available in schools and not

enough software available for instructional purposes.

Teaching and computers

Approaches to using computers in mathematics classroom have variety in each school level.

Some teachers wrote programs themselves, others used software written with the school system or

obtained by exchanges with other schools.

Teachers' conceptions in teaching with computers

(Teachers' conceptions and users and non-users)

In comparing teachers who use computers with those who do not, there are differences in

conceptions' influence of computers on mathematics educations. For users, teaching with

computers positively influences KS [knowledge and skills], I [intuitions], and SPS [student's

problem solving]. But at the elementary school level, some users have negative opinions in PPS

[possibility of problem solving] and CP [changes of problems]. On the other hand, non-users have

various opinions about influences of computers.

From the results of teachers' conceptions, we find that teachers who have conceptions that

"the nature of problems may change" are not so many. This problem related problems of teachers'

experiences of problem solving with computers in mathematics.

(Teachers' conception and the mathematics teaching)

The differences among teachers' conceptions depend on differences of source of programs

which were used by teachers, and do not depend on their differences of approaches to using

computers in mathematics teaching.
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In sum, in Japan there are two problems: first, there are problems about environments of

computers; second, the problem is teachers' computer literacy. This problem includes not only

distinction between user and non-user, but also distinction between writing program oneself and

not. Furthermore, teachers' experiences in problem solving with computers in mathematics also

should be included.
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[ Appendix DI ]
Questionaires

Prefecture Name of school

Teacher: Name Age Sex male /female

Q.1 Which grade are you teaching now? How often do you use a computer in your classroom?

grade number The frequency of using computer in your classroom

& class of student never sometimes almost every week every week

1 2 3

1 2 3

1 2 3

4
4

4

Q.2 Have you been used a computer in your classroom?

1. yes 2. no

I II 11. 1 ; 1 1
.1.. 1 1t.

anziraikamtswasiiial.

Q.3 How many microcomputers of computer terminals are usually available for useby that

mathematics class?

number of computers (at the moment)

number of computers (two years ago)

Q.4 For teaching and learning purposes, where is the computer usually used?

1) in your class

2) in a computer laboratory

3) in other place (precisely:

Q.5 Can you get support from others when you are using computer in your class?

1. yes (who: ) 2. no
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Q.6 Which of the following types of software have been used by you at school?

Circle one or two usages that apply.

1) drill and practice programs

2) tutorial programs

3) word processing programs/desktop publishing programs

4) painting and drawing programs

5) educational games

6) simulation programs

7) mathematical graphing programs

8) statistical programs

9) programing languages

10) spreadsheet programs

11) programs for recording or scoring tests

12) database programs

13) authoring programs for writing CAI lessons

14) tele computing

Q.7 How often do you use these sources of computer programs in your instruction in this

mathematics class?

not once several more

used or times often

twice twice a year than that

1) programs that I wrote 1 2 3 4

2) programs copied from books or magazines 1 2 3 4

3) software written with the school system or 1 2 3 4

obtained by exchanges with other schools

4) other commercial software 1 2 3 4
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Q.8 How often have you used the following approaches to using computer for your mathematics

lessons in this class?

never sometimes often

1) let students explore concepts on their own 1 2 3

2) demonstration: the teacher demonstrates an 1 2 3

idea or skill

3) testing: students take tests by using computer 1 2 3

software

4) enrichment: fast learners get additional 1 2 3

instruction

5) remediation: slow learners get additional 1 2 3

instruction

6) for students to use as a tool for word 1 2 3

processing, calculation, and database

7) others 1 2 3

Q.9 How frequently are you engaged in each of following activities?

never sometimes often

1) talking generally about instructional uses of

computers or educational purposes with

another teacher

2) talking about professional uses of computers,

(e.g. programming, recording grades etc.)

with another teacher

3) meeting with teachers from other school to

discuss the use of computers

1 2 3

1 2 3

1 2 3

991 307



Q.10 To what extent would you use a computer in your classroom or teaching and learning

purpose in the future if given the opportunity?

1) willing to use computers regularly

2) not very willing to use computers

3) may use computers if a certain condition is arranged

In question 12, if your answer was "yes," you may skip the next question 11, and answer Q.12.

Q.11 What are the main reasons for not using a computer on teaching and learning purposes in

your classroom? Circle one or two reasons that apply.

1) insufficient number of computers available

2) not enough software for instructional purpose available

3) an educational reason and purposes were unclear

4) how to use a computer in the classroom was unclear

5) not enough time to use computers

6) lack of experience using computers

7) others:

Please answer the next question 12.
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Q.12 Regarding problem solving activities in a mathematics class, this question involves the role

of computer usage.

1) By using computers, basic knowledge and skills

of mathematics can be mastered.

2) By using computers, the intuitions of a student

can be fostered.

3) By using computers, students' logical thinking

can be extended.

4) By using computers, students will be able to solve

problems which have been unsolved by them

previously.

5) By introduction of computers, the nature of

mathematics problems may change.

6) By using computers, we may foster students' problem

solving in school mathematics

yes neutral no

1 2 3

1 2. 3

1 2 3

1 2 3

1 2 3

1 2 3

Q.13 Write a paragraph on the role of computers regarding problem solving in school

mathematics.

[ Appendix. II ]

Table 1. Places for using computers

school levels classroom

elementary 5

lower secondary 2

upper secondary 1

total 8 ( 9%)

room for computer

19

34

14

67 (78%)

others

4

3

4

11 (13%)
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Table 2. Supports from others using computers

school levels

elementary

lower secondary

upper secondary

total

10

5

7

22

yes

(37%)

(13%)

(37%)

(26%)

17

34

12

63

no

(63%)

(87%)

(63%)

(73%)

no answer

1

0

0

1 ( 1%)

Table 3. The relationships among source of programs using in math class

both only one either

(a) (b) (c) (d) (e)

1)- 2 28 (33%) 17 (20%) 35 (42%) 3 ( 4%) 65 (77%)

1)- 3 45 (54%) 22 (26%) 19 (23%) 12 (14%) 76 (90%)

1)- 4 42 (50%) 17 (20%) 22 (26%) 13 (15%) 77 (91%)

2)- 3 27 (32%) 19 (23%) 4 ( 5%) 34 ( 5%) 78 (92%)

2)- 4 35 (42%) 11 (13%) 6 ( 7%) 29 (35%) 58 (69%)

3)- 4 43 (51%) 28 (33%) 14 (17%) 13 (15%) 69 (82%)

(a) ( ) and 0
(b) usual-usual,s ometimes-sometimes, and once or twice-once or twice

(c) ( ) only

(d) 0 only

(e) ( ) or 0
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[ Appendix III ]

Table 1. The relationships between teachers' conceptions

(a) yes-yes, no-no (d) 0 no

(b) yes-yes, no-no, neutral-neutral (e) ( )no - 0 yes

(c) ( )yes- Ono (0 ( )no

(a) (b)

users

(c) (d) (e) (f) (a) (b)

eon-users

(c) (d) (e) (f)

1)- 2 39 53 3 19 1 13 13 29 3 9 2 17

1)- 3 29 49 4 29 0 7 15 34 4 14 0 5

1)- 4 25 37 7 37 0 11 13 29 3 17 3 9

1)- 5 27 39 10 31 0 14 12 22 3 10 4 23

1)- 6 36 50 3 21 1 14 12 31 2 15 0 9

2)- 3 23 39 3 32 3 14 8 22 7 25 2 8

2)- 4 27 44 8 30 2 11 11 21 4 23 1 11

2)- 5 23 35 10 31 4 18 17 25 12 12 18 18

2)- 6 33 45 2 21 3 19 12 28 1 21 1 6

3)- 4 25 50 4 19 0 16 13 28 1 12 5 15

3)- 5 23 42 6 19 0 23 14 28 1 3 6 24

3)- 6 33 61 2 4 3 20 13 36 2 7 4 12

4)- 5 27 43 4 17 2 24 15 26 2 6 7 23

4)- 6 26 43 2 11 6 31 13 31 2 12 2 12

5)- 6 28 43 1 15 8 26 14 29 6 21 0 5
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[user]

Table 2. Basic knowledge and skills

elementary lower sec. upper sec. total

yes 16 28 10 54

neutral 9 10 9 28

no 3 0 0 3

no answer 0 1 0 1

Table 3. Intuitions

elementary lower sec. upper sec. total

yes 12 26 12 50

neutral 11 12 5 28

no 5 0 2 7

no answer 0 1 0 1

Table 4. Logical thinking

elementary lower sec. upper sec. total

yes 12 16 5 33

neutral 10 21 13 44

no 6 1 1 8

no answer 0 1 0 1
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Table 5. Possibility of problem solving

elementary lower sec.

yes 8 16

neutral 11 19

no 9 3

no answer 0 1

upper sec. total

9 33

7 37

3 15

0 1

Table 6. Changes of problems

elementary lower sec.

yes 8 19

neutral 10 16

no 9 3

no answer 1 1

upper sec. total

11 38

5 31

3 15

0 2

Table 7. Student's problem-solving

elementary lower sec.

yes 16 25

neutral 8 13

no 4 0

no answer 0 1

upper sec. total

7 48

10 31

2 6

0 1
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[non-user]

Table 8. Basic knowledge and skills

elementary lower sec. upper sec. total

yes 3 10 6 19

neutral 3 14 11 28

no 0 3 5 8

no answer 0 0 0 0

Table 9. Intuitions

elementary lower sec. upper sec. total

yes 2 12 10 24

neutral 4 10 11 25

no 0 5 1 ,;.

no answer 0 0 0 0

Table 10. Logical thinking

elementary lower sec. upper sec. total

yes 3 7 2 12

neutral 3 12 12 27

no 0 8 8 16

no answer 0 0 0 0

3:
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Table 11. Possibility of problem solving

elementary lower sec. upper sec. total

yes 1 6 10 17

neutral 5 15 4 24

no 0 6 8 14

no answer 0 0 0 0

Table 12. Changes of problems

elementary lower sec. upper sec. total

yes 3 12 16 31

neutral 3 10 5 18

no 0 5 1 6

no answer 0 0 0 0

Table 13. Student's problem-solving

elementary lower sec. upper sec. total

yes 2 5 6 13

neutral 4 17 11 32

no 0 5 5 10

no answer 0 0 0 0

3 1 5299



[ Appendix IV ]

Table 1. The relationships between source of programs and teachers' conception

(a) [yes(Q12)-often(Q7)] /[often(Q7)]

(b) [yes(Q12)- often +several(Q7)] / [+several(Q7)]

(c) [yes(Q12)-often+several +once or twice(Q7)]/ [+once or twice(Q7)]

(d) [yes(Q12)-nothing(Q7)] /[not used(Q7)]

(e) [no(Q12)-often(Q7)]/[often(Q7)]

(0 [no(Q12)-often +several(Q7)]/ [+several(Q7)]

(g) [no(Q12)-often +several +once or twice(Q7)]/ [+once or twice(Q7)]

(h) [no(Q12)-not used(Q7)1 /[not used(Q7)]

YES (0.12) NO(Q.12)

Q7-Q12

user non-user user non-user

(a) (b) (c) (d) (e) (0 (g) (h)

1)-1) 8/13 24/39 43/66 10/19 0/13 1/39 1/66 2/19

1)-2) 5/13 23/39 39/66 10/19 1/13 2/39 5/66 2/19

1)-3) 4/13 11/39 27/66 5/19 0/13 4/39 6/66 2/19

1)-4) 4/13 16/39 24/66 8/19 2/13 5/39 11/66 4/19

1)-5) 7/13 20/39 31/66 6/19 1/13 7/39 12/66 3/19

1)-6) 7/13 17/39 37/66 10/19 0/13 2/39 5/66 0/19

2)-1) 3/ 4 6/ 9 20/31 31/51 0/ 4 0/ 9 1/31 2/51

2)-2) 2/ 4 6/ 9 21/31 26/51 0/ 4 0/ 9 1/31 0/51

2)-3) 0/ 4 2/ 9 11/31 20/51 0/ 4 1/ 9 2/31 5/51

2)-4) 0/ 4 2/ 9 12/31 20/51 0/ 4 2/ 9 5/31 9/51
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2)-5) 2/ 4 6/ 9 19/31 18/51 0/ 4 1/ 9 3/31 10/51

2)-6) 1/ 4 3/ 9 17/31 28/51 0/ 4 1/ 9 2/31 4/51

3)-1) 7/11 21/31 38/58 15/26 1/11 1/31 1/58 2/26

3)-2) 4/11 15/31 42/58 15/26 1/11 1/31 3/58 4/26

3)-3) 6/11 11/31 20/58 12/26 1/11 4/31 4/58 4/26

3)-4) 5/11 12/31 25/58 8a6 3111 7/31 9/58 6/26

3)-5) 4/11 11/31 24/58 13/26 1/11 6/31 9/58 6/26

3)-6) 5/11 12/31 29/58 17/26 2/11 4/31 6/58 0/26

4)-1) 16/25 29/45 39/56 13/28 2/25 2/45 2/56 1/28

4)-2) 16/25 28/45 34/56 14/28 0/25 1/45 1/56 6/28

4)-3) 10/25 16/45 21/56 11/28 3/25 4/45 4/56 3/28

4)-4) 7/25 17/45 22/56 11/28 3/25 6/45 6/56 8/28

4)-5) 12/25 19/45 28/56 10/28 3/25 7/45 8/56 6/28

4)-6) 14/25 24/45 32/56 14/28 2/25 3/45 3/56 3/28

Table 2. The relationships between approaches to using computers and teachers'

conceptions

YES (Q.12) NO(Q.12)

user pon-user user pon-user

(f)(a) (b) (c) (d) (e)

1)-1) 18/25 47/73 6/11 2/25 2/73 1/11

1)-2) 14/25 42/73 7/11 1/25 5/73 2/11

1)-3) 13/25 27/73 5/11 2/25 7/73 1/11

1)-4) 15/25 29/73 4/11 3/25 12/73 2/11

1)-5) 14/25 33/73 5/11 4/25 12/73 2/11

1)-6) 13/25 41/73 6/11 3/25 5/73 1/11
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2)-1) 3/ 8 39/58 14/26 0/ 8 1/58 2/26

2)-2) 4/ 8 36/58 13/26 0/ 8 3/58 4/26

2)-3) 2/ 8 23/58 9/26 0/ 8 3/58 5/26

2)4) 5/ 8 25/58 8/26 1/ 8 8/58 6/26

2)-5) 7/ 8 29/58 9/26 0/ 8 9/58 5/26

2)-6) 4/ 8 34/58 13/26 0/ 8 2/58 4/26

4)-1) 1/ 4 13/21 40/63 2/ 4 2/21 1/63

4)-2) 1/ 4 11/21 38/63 0/ 4 1/21 6/63

4)-3) 1/ 4 9/21 23/63 1/ 4 2/21 6/63

4)4) 0/ 4 6/21 27/63 2/ 4 5/21 9/63

4)-5) 1/ 4 7/21 31/63 1/ 4 6/21 8/63

4)-6) 1/ 4 12/21 35/63 1/ 4 5/21 4/63

5)-1) 2/ 5 23/34 30/50 2/ 5 2/34 1/50

5)-2) 215 20/34 29/50 0/ 5 1/34 6/50

5)-3) 1/ 5 10/34 22/50 2/ 5 4/34 4/50

5)-4) 1/ 5 13/34 21/50 2/ 5 5/34 8/50

5)-5) 2/ 5 15/34 23/50 2/ 5 5/34 9/50

5)-6) 2/ 5 17/34 30/50 2/ 5 2/34 4/50

user (a) [yes(Q12)-often(Q8)] /[often(Q8)]

(b) [yes(Q12)-often+sometimes(Q8)] /toften+sometimes(Q8)]

non-user (c) [yes(Q12)-never(Q8)] /[never(Q8)]

user (d) [no (Q12)-often(Q8)] /[often(Q8)]

(e) [no (Q12)-often+sometimes(Q8)]/[often+somedmes(Q8)]

non-user (0 [no (Q12)-never(Q8)] /[never(Q8)]
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Table 3. Computer usage in the future

active passive conditions no answer

elementary 19 (67.9) 24 ( 7.1) 7 (25.0) 0 ( 0.0)

lower secondary 33 (84.6) 0 ( 0.0) 5 (12.8) 1 ( 2.6)

upper secondary 12 (63.2) 4 (21.1) 3 (15.8) 0 ( 0.0)

total 64 (74.4) 6 ( 7.0) 15 (17.4) 1 (1.2)
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Discussion of Professors Sawada and Kumagai's paper:

Fey: Are there comments or questions to either speaker? Professor Fujii.

Fujii: I have a question about Table 11 on page 14; the third item attracts students. How

was this asked in the questionnaire?

Kaida: Professor Fujii feels the number shown on the Japanese side is quite reasonable but

the American one is extremely low and he doesn't know why. Can someone offer a
reason for this low value?

Choate: I think it's mostly that American kids go to the school that's in their district and it

isn't a factor of being attracted to a school because they have computers, and also

most American schools have a lot of computers so, . . . Jim you want to argue with
that?

J. Wilson: Well, there wouldn't very often be choices between a school that had lots and a

school nearby that didn't have a lot of computers, so it isn't that decision.

Demana: In the process of collecting this data, looking at computer use in school, did you look

at the use of hand-held calculators, or record the use of hand-held calculators?

Sawada: Well, in the case of the national survey, they surveyed only microcomputers, no hand.

held calculators.

Demana: Do they have a conjecture about what the use is?

Sawada: Well, about 20 years ago, the use of hand-held calculators was encouraged, and, in

fact, all the junior and senior high schools had the hand-held calculators. But since

then, most of them are not being used, they're not welcomed. And it seems that in

the case of the computers, it is quite different.

Kaida: I have a question. In the survey that was done with the total of 143 teachers, why

that number?

Kumagai: Since the objective was to make a survey of the use of computers, they tried to find
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the schools which have computers and which frequently use computers; but since not

very many schools have computers or use them, this is the number they had to work

with.

Zilliox I guess I would like to know if the researchers were shocked or surprised by any of

the results that they got, or was this something that they anticipated? Or if there was

any real awakening that they gotfrom looking at the data?

Kumagai: We were more or less surprised at the response to question #12 which asks whether

introduction of the computer would change in any way the types of mathematical

problems; and the answer mostly was no, and the response was very low. My

conjecture is that there were probably many math teachers that never used the

computer to solve problems themselves. And if they did, probably the number of

responses would change.

Choate: A question to Mr. Sawada. On page 7, the bottom paragraph speaks to the Japanese

publication industry. One phenomenon in America that's occurring is the creation of

software to go along with textbooks series and in our conferences that's a big selling

point for the publishers. I have two questions about that for you. (1) is with the new

curriculum, has the Ministry of Education stipulated that software has to go along

with the textbooks ?; and (2) in terms of the research, do you think that the responses

would change if the teachers had experience with software that went along with

existing text materials?

Sawada: With respect to the new curriculum or Course of Study just issued by the Ministry of

Education two years ago, the actual practice will start in 1992 for elementary, 1993

for junior high, and 1994 for upper secondary schools. The textbooks going along

with the new courses are being introduced only in the elementary schools now. None

has been produced for lower secondary and upper secondary schools yet. Therefore,

we cannot yet tell whether the software will go along with those textbooks or not.

But certainly the Ministry of Education is recommending promotion of the software.

H. Wilson: This question is not about problem solving per se, it's more on teacher education. I

guess for my own information, is there a program or an ongoing inservice

requirement for teachers? Do they have to return to teacher education institutions for

updating their knowledge. I'm concerned about changing their attitudes towards the
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use of the computers and whether it's going to be done with expertise or just put the

teacher in the environment and expect the computers to be used in some way.

Sawada: Page 11, Table 9 shows the present condition of the teachers as far as computer

knowledge is concerned. And recently in every prefecture, they give a seminar or

training course especially for the lower secondary school industrial arts and

homemaking teachers. Table 10 shows the location of the inservice training of

teachers in computer education.

Miwa: This table shows only the percentage of the teachers attending the seminars. I would

like to know the actual number of times inservice education is scheduled or offered.

Sawada: This table only shows the survey from 1989 onwards, and those who attended the

inservice seminars and what percentage of the those attended were national or local or

whatever. It doesn't say how many.

Fey: Maybe that's something you have to work out between yourselves. Mr. Morimoto,

do you have a question?

Morimoto: Every summer this kind of inservice seminar has been held and so far what's going

on is that the Ministry of Education invites teachers from every prefecture. They

gather in a central place, get training and then return to their prefectures. And then

they become instructors and give seminars to teachers in the local area. So far, it has

started with the industrial arts and homemaking teachers, and is almost finished.

Now they are including the science and math teachers. This year the inservice work

in local areas is held at thirty different locations. But how many for math and science

subjects, I don't know.

Becker: I'm curious about the implementation of computers in the new syllabus in 1994. Will

there be difficulty in implementing the use of computers given the heavy emphasis on

preparation for college and university entrance examinations?

Sawada: I hope something will change. Right now we have what we call the Association of

Math Education, composed of college professors and math teachers. I'm a member

of it. We meet twice a year and we're talking about including the computeras part of
the entrance examination system.
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Miwa: As you know, at the high school level and especially for general education, but not

vocational, the curriculum and teaching methods is greatly influenced by the entrance

examinations of colleges and universities. Now, this new Course of Study will start

in 1994 which means that three years later the first graduates of high schools will be

affected by this new problem. However, according to the new Course of Study, the

computer is only optional, it's one of the electives and so it's a really small amount.

So, if people say that the content from an elective should not be asked on entrance

exams, then there will be the tendency for high school teachers to regard the computer

very lightly. If that happens, it may even be possible that the computer is completely

neglected at the high school level. So, at this moment, nobody can say anything

about this. The strongest powers who have the greatest influence will be a group of

college professors who determine the types of entrance examinations. So, we need to

have good understanding, which we request, of the college professors regarding the

use of computers.

Becker: Just out of curiosity, can students get instruction or experience in working with

computers outside the regular schools (juku), or are there some other kinds of

opportunities?

Sawada: In talking about the juku, there are three types: one is for advanced students who

want to go to the good schools and to do that they have to take an entrance examfrom

elementary to lower secondary school, then from lower to upper secondary school,

and then to college. The second level is for remedial purposes, for slow learners.

Now, these are students who have either failed or have difficulty in the general public

or general schools, and they need additional training. The third type is just for

general students. Now, in either case though not a majority, some jukus use

computers as an aid, but I don't know any school where the student can learn

computer programming.

Morimoto: Well, it is true that the number of jukus using computers is very limited. However,

in many cases the students have computers athome and are using the modem which

connects the computer to a juku and then they study using computers. Or they can

also purchase software from the juku and study at home.

Becker. How about in activity clubs in the schools, as a kind of extra-curricular activity?
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Sawada: Well, according to the IBA research, it scorns that computer usage in club activities is

higher than for any other subject area.

Demana: Since the tests that determine whether the kids go to the university is decided by

university professors, how do you change the university professors' way of thinking

about this?

Sawada: It seems that we have almost no problems with the math education professors at the

college level. The problem is with the math professors...not math education. So, if

they can realize the importance of computers, then they will change their minds, and

especially in very high level colleges and universities. If they change their system,

then the other colleges will follow.

Fey: I noted that you begin all of that with the word "if." It seems now that it is time for

lunch and an excursion. Jerry, do you want to describe the schedule for the

afternoon?

Becker: Yes, now we'll go over for lunch and, afterwards, we'll visit the lab school. We'll

be there approximately an hour to hear Gary Martin and his colleagues describe their

geometry project. Then the bus will be right on time for the excursion...Hawaiian

time, that is.

End of Discussion



COMPUTER USE IN TEACHING MATHEMATICAL PROBLEM SOLVING:

PRE-SERVICE TEACHER EDUCATION IN YOKOHAMA NATIONAL

UNIVERSITY

Yoshihiko Hashimoto

Faculty of Education, Yokohama National University

Yokohama, Japan

1. Introduction
My title given by the Japanese side is pre-service teacher education in our University related

to computer use in teaching mathematical problem solving.

Education School elementary secondary

preservice

in-service

A

C

B

D

The above figure is useful for analysis. We can think about 4 cells such as A (pre-service )

education at elementary school level), B (pre-service, secondary), C (in-service, elementary) and D

(in-service secondary). I would like to provide information about B in this paper. First of all, let's

think about the following problem. (Johnson, 1985; Borasi, 1986) A student is given the fraction

16/64 to reduce.

We can see the same digit in both the numerator and denominator, so we can cancel like

this: i4
4

This is a case in which an incorrect mathematical procedure led to correct results. The problem is

that "Are there any two digit numbers in both numerator and denominator to satisfy the condition?"

We can find nine trivial answers easily. Others can't be found intuitively.

We can think of computer use to solve this problem. The programming and output written here

were made by one of my undergraduate students. He could get the correct answers by usingta
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computer, after learning the basic language in only several hours, as follows.

10 PRINT "Reduction in special case"

20 PRINT TAB(1) "A"; " II II; "Cif; " "; "AB/BC"

30 FOR A=1 TO 9

40 FOR B=1 TO 9

50 FOR C=1 TO 9

60 IF (10*A +B )*C=A*( 10*B +C) THEN PRINT A;B;C; " ";10*A+B"/ "10*B+C

70 NEXT C
80 NEXT B

90 NEXT A

100 END

Reduction in special case

A B C AB/BC
1 1 1 11 / 11

1 6 4 16 / 64

1 9 5 19 / 95

2 2 2 22 / 22

2 6 5 26 / 65

3 3 3 33 / 33

4 4 4 44 / 44

4 9 8 49 / 98

5 5 5 55 / 55

6 6 6 66 / 66

7 7 7 77 / 77

8 8 8 88 / 88

9 9 9 99 / 99

If one thinks about the problem using paper and pencil, then it will take much more time.

If students can translate this problem into "BASIC" language --- in this situation, FOR NEXT,

IF THEN, PRINT ---, then they will be able to get 13 correct answers, including (numerator,

denominator) = (16, 64), (19, 95), (26, 65), (49, 98). I would like to emphasize that it is effective

to use repetition or iteration as one of the characteristics in the function of computer.

I think it is a good example of computer use in mathematical problem solving. The

important thing is that we have to give "good" problems in mathematical problem solving to
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learners. Such problems should be developedand prepared.

2. Pre-service Teacher Education in Our Faculty

Pre-service teacher education at the secondary school level in the faculty of education at

Yokohama National University will be explained. We have four faculties such as engineering,

economics, management, and, education.

I have three classes in the undergraduate course. One of them is a required subject related

to teaching methods (90min. x30). I treat the nature of the classroom process, various types of

teaching including their merits and demerits, making lesson plans and use of technological

equipment and so on in the course.

I treat at least two things about computers in the course. They are reduction in special case

as I explained now and tessellation in plane figures related to the use of technological equipment.

Tessellation will be shown practically in the Seminar. I am convinced that using the computer is

very effective and efficient for movement of figures. The software was made by one of my

graduate students in the master course (Appendix 1). The student took about two months or so to

make the software by using Quick BASIC. Of course, I gave him some advice from a

mathematical and an educational point ofview.

3. School Teacher's Certificate
The requirements for a School Teacher's Certificate were revised in March, 1989 by the

Ministry of Education. At least 20 credits (2 credits means 90min. x15) for certificate of lower

secondary school(grades 7-9) in mathematics must include the following.

Algebra 6 or 4

Geometry 6 or 4

Analysis 4

Probability, Statistics 4 or 2

Computer 2

At least 20 credits for certificate of upper secondary school(grades 10-12) in mathematics

must include the following.

Algebra 6 or 4

Geometry 6 or 4

Analysis 6 or 4

Probability, Statistics 4 or 2

Computer 4 or 2

One of the characteristics in the revised school teacher's certificate for becoming a
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mathematics teacher was that the computer instead of survey was introduced. The new school

teacher's certificate is applied from sophomore students in 1991. Taking four credits for computer

was detemiined by faculty members in the department of mathematics education and the department

of mathematics in our University. That is implemented from last April. One of my colleagues

teaches computer.

4. "Introduction to Computer" in our Faculty
This subject is a required subject for sophomore students majoring in mathematics in our

Faculty. Four credits are given. This means 90 minutes/week 30 times. The number of students

is about 50. Lectures and practice are carried out about half-and-half by using about 30 laptop

personal computers.

The main purpose of this course is to teach fundamental and important algorithms in

computer programming by using "PASCAL". Of course, it is important for students to be able to

understand and use it. The outline is as follows:

a. Explanation of hardware in computer

b. Numerical expression and errors in computer

c. Explanation of PASCAL's grammar and important algorithms used in basic sentences

d. Practice of programming by mathematical problems

The mathematics curriculum for the upper secondary school (grades 10-12) was revised by

the Ministry of Education in 1989 and will put in force beginning in April, 1994 (Appendix 2). In

the curriculum, the content of computer is included in the subjects "Mathematics A", "Mathematics

B" and "Mathematics C". Therefore, the following things are treated in the "Introduction to

Computer":

a. Greatest common divisor by the Euclidean algorithm

b. Calculation of square root by iteration

c. Solution of non linear equations by Newton's method or method of bisection

d. Numerical integration by the trapezoidal rule or Simpson's rule

e. Binomial coefficient by using Pascal's triangle.

(This section was prepared by associate professor Yutaka Baba who is one of my colleagues and a

statistician.)

5. Future Perspective
As I mentioned earlier, the school teacher's certificate and the mathematics curriculum were

revised. According to these, we have been implementing a subject "Introduction to Computer"

since April 1991 in our Faculty as a required subject for mathematics students. I hear that some

other universities assign two credits for junior year students. My feeling is that if a consensus on
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computer use between classroom teachers and board of education emerges, the Japanese will move

quickly to implement more widespread use of computers. The time has come for us to introduce

computers in school mathematics in Japan.
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Appendix 1. Tessellation
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Appendix 2. Mathematics Curriculum in Upper Secondary School

Mathematics in the upper secondary school is composed of several subjects whose titles

and associated credits are as shown below.

Mathematics I (Standard number of credits 4)

Mathematics II (3) , Mathematics BI (3)

Mathematics A (2) , Mathematics B (2)

Mathematics C (2)

Mathematics I is required for all students, but the other mathematics subjects are optional.

One credit consists of 35 class hours and a class period of 50 minutes is defined as one class hour.

Mathematics I

1. Quadratic Functions 2. Geometrical Figures and Mensuration

3. Treatment of Number of Cases 4. Probability

Mathematics II

1. Various Functions 2. Geometrical Figures and Equations

3. Variation of Values of Functions

Mathematics III

1. Functions and Limits 2. Differential Calculus 3. Integral Calculus

Mathematics A

1. Numbers and Algebraic Expressions 2. Plane Geometry 3. Sequences

4. Computation and Computer

Mathematics B

1. Vectors 2. Complex Numbers and Complex Number Plane

3. Probability Distribution 4. Algorithm and Computer

Mathematics C

1. Matrix and Linear Computation 2. Various Curves

3. Numerical Computation 4. Statistics

The underline parts are related to computer use.

(Ministry of Education, translated by Nagasaki, Sawada and Senuma(National Institute for

Educational Research); Mathematics Program in Japan,, 1989)
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Discussion of Professor Hashimoto's paper:

Choate: Now let's open the floor for discussion. Professor Becker.

Becker: First, I would like to compliment Professor Hashimoto for a very concise and clear

presentation. Professor Hashimoto, you listed five items towards the end of your

talk. Could you repeat the last two of those? I didn't get all of them down.

Hashimoto: I'm sorry. The last two things are numerical integration by the trapezoidal rule or

Simpson's rule, and the last is the binomial coefficient using Pascal's triangle.

Becker: Okay, then, maybe one more question. What were these examples of, were they

examples of ideas being taught using the computer?

Hashimoto: They are included mainly in elective course C. Of course, they are also included in

both mathematics A and B, but mainly in C where they are emphasized.

Damarin: Sticking with those same items, do you have your students program solutions to

those, or do you have demonstration programs, of, for example, the greatest common

divisor by the Euclidean algorithm? How do your teacher education students use the

computer in relation to that problem?

Hashimoto: Please look at page 40, and 41 also. This course is taught by my colleague so I

don't know in detail what is going on. However, as far as the Euclidean algorithm is

concerned, as stated on page 41, #3, writing the program is expected.

Fey: I think people in the U.S. who teach methodology courses for preservice teachers

find it a frustrating experience because it's hard to convey ideas of how to conduct a

classroom out in the school when you're not in the school showing it. How do you

run your lessons about computer use? Do you try to simulate a classroom

environment and teach the preservice teachers the way you would like them to teach

their students? Or do you give a lecture about how to use this tessellation program?

How do you create the kind of classroom atmosphere that you want with computers?

Hashimoto: In my class, luckily having only about 15 students, I am recommending group work

and give one terminal to every two students. And then, providing software, they can
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experiment themselves and advance as they like at their own pace.

Demana: Let's assume for a minute that you do get computers integrated into your classrooms

and you're doing it widespread in your mathematics education courses. What impact

do you think that will have on the mathematicians at the university and do you have

any past history of where the material on the enz.-ance requirements and what happens

in the mathematics department has been impacted on by what you've done in school

mathematics and mathematics education?

Hashimoto: That question was answered by Professor Miwa yesterday, so maybe this is

repetition again. But by 1994, the new course will be set up and by then it depends

mainly on how the prestigious or prominent universities will deal with the type of

entrance exams. Especially in the math teachers' training, the importance is the

relationship between the mathematicians and math educators among thus college

professors. In my case, at my university, there is a very good relationship and the

math professors do understand what the math educators want or are aiming at.

Miwa: I just want to add to my comment yesterday, that the curriculum is set up nationally.

It is revised about every ten years, which is a very slow pace compared with the very

rapid change in the world. So, for example, in the case of computers, it's just at this

time that the computer is being introduced but not in a very progressive way. I think

if computers were not introduced in the revised Course of Study, probably they

wouldn't be introduced into school education on a full scale until the 21st century.

Dugdale: Concerning the tessellations program, you mentioned that making the tessellation was

only the first part of the activity and that you expected a proof of why that figure

would tessellate. Can you say more about this? For example, how much formality

do you expect in a proof, how much variety do you see, and how do students

approach the task?

Hashimoto: As far as the introduction of tessellations is concerned, our plan is to spend three

class periods of 90 minutes each. In the first period students work on the regular

polygon and determine which regular polygons tessellate. Certainly there are only

three, the triangle, square, and hexagon. Then in the next period, we treat mint than

two regular polygons and there are eight possible combinations. And then we go to

any type of polygon, in varying possibilities, and certainly any quadrilateral will
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tessellate. However, for the students, this is very difficult to understand - why any

type of quadrilateral will tessellate. Of course, in that case students use manipulatives

and cut out papers and try to work it out and see why. Then they go to the general

cases using the computer. Since this software includes the five ways of tessellating

and using the idea of congruent, it is rather easy to understand; and that's how it

goes. This is included especially in the math A curriculum (as stated on page 38),

and math A includes plane geometry in which students learn transformations using

the computer. We have developed this course in relation to this curriculum.

Miwa: This is related to Professor Fey's narrative question given before. When you talk

about the computer in teaching, there are two things involved. One is to teach about

the computer itself and another one is to teach something using the computer. When

you teach computer science, of course you have to use the computer. Now I know

you have a lot of experience in teaching in preservice training. Could you tell us the

how you are doing in your situation? How to introduce computer education in

preservice training?

Fey: Well, one of the things we try to do is to simulate lessons with the prospective

teachers and to teach topics from the secondary school curriculum using the

technology the way we would use it. It's not always effective because preservice

teachers are very skeptical. They think they know how to teach and so it's hard to

create the atmosphere that you want. Other times we'll, perhaps not very effectively,

give them a piece of software like the Geometric Supposer or Sketchpad, show them

some things about what it'll do, and then ask them to go to the computer and explore

the tool and come up with some ideas of their own, perhaps then the task will be to

design lessons that would use this technology themselves. So, some of it is

simulated lessons, some of it is introduction to a tool, and then a lab assignment

where the idea is to figure out how they would use it in teaching after we've given

some examples.

7illiox: I guess I'd like to add something to what Professor Fey said. It may just, I don't

think it just applies to the program that we have at the University of Hawaii, but one

of the expectations we have of preservice teachers is that they become personal users

of the computer so that their writing assignments have to be done in word processing;

so, that they overcome some of the fears that they have of just the equipment. And

the second thing is that we expect them to learn mathematics themselves through
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Sawada:

Hashimoto:

using the computer. It's not just how the students they may teach would learn

mathematics, but their learning mathematics themselves through various pieces of

software.

Professor Hashimoto talked about computer use in tessellation. Related to this, I

would like to ask how often the computer is used in math education at the college

level. One of the reasons the computer is not often used in the lower or upper

secondary school levels is because the computer is not very often used at the college

level or at the teacher education level.

In my university, we use, in 25 classes, 2 to 3 class periods for work on computers.

In other words, about ten percent. However, starting in the sophomore year and in

some schools including thejunior year, this will change the situation a lot more. But,

at present, in general I can say that certainly the computer is very rarely used at the

college level. Of course, in a college of liberal arts an elective on computers can be

chosen; but not very many students choose it.

H. Wilson: I have a question on the issue of certification. Is the certification standard established

for national norms, or is it very much a function of the university? Is it on a common

basis that all this is changing or is it just at your university?

Hashimoto:

Becker

It's on a national level.

I would like to go back and add to what Jim Fey was saying about how we make use

of computers in preservice education, and I'll talk just about the example of Southern

Illinois University at Carbondale and its course called "Methods of teaching

elementary school mathematics." First of all, a little background on a typical student

in the preservice training course. Students' mathematical background almost always

is not very substantial. Perhaps they have had junior high school mathematics, some

have had algebra I also, and some may havehad a geometry course in secondary

school. Not frequently have they had a full sequence of math courses through upper

secondary school. Then they come to our university where they are required to take

two mathematics courses: one is an informal development of the real number system,

and the other is informal geometry although sometimes that course is taught by

professors who teach a kind of a tenth year secondary school deductive geometry

course. Generally, we don't like that but some teach it that way nevertheless. And
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most of the students have had no contact with computers. Now, in our college of

education we have two microcomputer labs that are equipped with Apple Re

microcomputers and now we are converting to V icintoshes. In the elementary

mathematics methods course there are two components of what we do with

computers. First, we deal with LOGO a little bit, in about five to ten 50-minute

periods. We begin by performing physically some of the movements of the turtle in

the classroom. And in doing that we introduce maybe 8 to 10 simple commands in

LOGO. Then we go to the microcomputer lab and students use sample lessons that

come from the Minnesota Educational Computer Consortium. The students actually

work through some of those lessons. In that way we try to provide a bridge from

what we are doing at the university level to what they will be doing in the school

classroom. We also solve some problems by writing a program in LOGO. We

discuss how they might be able to integrate what they have learned about LOGO into

their own teaching. The second component involves software. We have some

software from Sunburst Communications. We have the students sit at the

microcomputer and work through some of the software. Later we discuss how they

might use this software in their classrooms. And, finally, I should mention that it's

likely that when these teachers are out teaching in the classroom they will not have

easy access to computers. They might be able to get one or two computers that the

school has for use in their classrooms some of the time.

Teague: Thank you very much. It is now break time. I'd like to thank Professor Hashimoto

for a very interesting and stimulating presentation.

End of Discussion
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GRAPHICAL REASONING FOR
NEW APPROACHES TO TOPICS IN MATHEMATICS

Sharon Dugdale

University of California at Davis

Introduction

Use of function plotting software can facilitate mathematical reasoning and visualization of

functional relationships. However, in order to take full advantage of this capability, new

instructional approaches need to be devised. The examples discussed in this paper were developed

to explore the potential of function-plotting tools to promote graphical reasoning in two contexts.

The first context, trigonometric identities, is a topic that traditionally does not involve graphical

representations. Here the goal was to integrate graphical representations into the topic and to

compare the results of two different approaches--one approach that required graphical reasoning,

and one that did not. In the second context, polynomial functions, the goal was to replace a

traditional rule-based treatment of polynomial graphs with a computer-interactive treatment, using

graphical reasoning to develop a sense of why polynomial graphs behave as they do.

Building a Foundation for Trigonometric Identities

Trigonometric identities are traditionally dealt with as exercises in symbol manipulation.

However, guided experimentation with trigonometric graphs can help students acquire fundamental

understandings and facility with the relationships among these functions in a possibly more

transparent and intuitive context. Two instructional approaches were developed to incorporate

graphical representations into a unit on trigonometric identities. One approach used graphical

representations as the foundation for trigonometric identities. The other approach supplemented a

traditional textbook treatment of trigonometric identities with related graphing activities. A study

was conducted to compare students' performance using the two approaches. A more complete

description of the instructional approaches and the comparison study appears in Dugdale (1990).

The Graphical Foundation Approach
In the Graphical Foundation Approach (Figure 1), students began with guided graphical

exploration, observing relationships among functions. When graphical exploration suggested
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particular relationships among the trigonometric functions, students verified the observed

relationships by algebraic symbol manipulation. Formalization of proving trigonometric identities

followed the informal observations and verifications of equivalences among functions.

Graphical Exploration --

Observation of

Relationships Among Functions

Verification of

Observed Relationships by

Algebraic Symbol Manipulation

Formalization of

Proving Trigonometric Identities

Figure 1. The Graphical Foundation Approach.

The instructional unit included a variety of activities, many of them requiring students to

use the graphs of functions to predict graphically the shapes of other functions before plotting. For

example, students used the microcomputer to plot the graphs of y = cos(x) and y = csc(x), then

predicted what the graph of the product function y = cos(x)csc(x) would look like. Students were

provided transparent slides (like those used with overhead projectors) to cover the microcomputer

screens. Using overhead projector pens to draw on the transparent slides, students added their

own work directly to the microcomputer display. Figure 2 shows a typical markup and

prediction.
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Figure 2. In the first frame, a student has plotted y = cos(x) and y = csc(x)

and has positioned a transparent slide over the microcomputer display,

matching the axes on the slide with the axes on the screen. In the second

frame, the student has used the graphs of y = cos(x) and y = csc(x) to

determine key features of the graph of y = cos(x)csc(x). In the third frame,

the student has sketched a prediction for y = cos(x)csc(x).
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In predicting the graph of y = cos(x)csc(x), students typically noted the zeros of y = cos(x)

and marked those places as zeros also of y = cos(x)csc(x), reasoning that the product is zero

wherever one of the factors is zero. A likely next step was to note the asymptotes of y = csc(x)

and mark those as x-values for which cos(x)csc(x) is also undefined. (These x-values were

usually marked with vertical lines in a different color, to indicate that there were no function values

on those lines.)

Students also noted the regions of positive and negative values for y = cos(x)csc(x).

Within each interval bounded by a zero and a discontinuity, if two functions are either both positive

or both negative, their product is positive. If one function is positive and the other negative, their

product is negative.

By examining the two given graphs near the marked discontinuities, students could predict

the asymptotic behavior of y = cos(x)csc(x). At each of the x-values for which cos(x)csc(x) is

undefined, cos(x) is near either 1 or 1, and csc(x) is either very "large positive" or very "large

negative." Hence, the product is either very "large positive" or very "large negative." After

making various observations of this type and marking their displays appropriately, students

sketched a prediction for y = cos(x)csc(x). Students checked their predictions by having the

microcomputer plot the predicted graph.

Most of the graphs predicted and then checked by plotting were chosen to be easily

recognizable, once they had been plotted. For example, the graph predicted in Figure 2 is

equivalent to y = cot(x). After identifying the graph as y = cot(x), and plotting to verify, students

were asked to justify algebraically the observed equivalence between the predicted function and the

function it turned out to look like. Students needed to decide what of their previous knowledge

was applicable and to devise a convincing argument for the apparent equivalence. Beginning with

simple identities, such as cos(x)csc(x) = cot(x), as used in the example, students could readily

recognize that substituting the definitions of functions and manipulating the resulting expressions

would verify that the two functions were equivalent.

After verifying an equivalence, students were sometimes asked to produce another function

which would make the same graph as the two functions that had been proved equivalent (for

example, another function that would make the same graph as y = cot(x) and y = cos(x)csc(x), in

the example above). By using further substitutions and manipulations, students found various

ways to make the same graph.

In using two graphs to predict the shape of a related function, students used and shared a

variety of ideas, for example:

When one graph has a function value of 1, the product is the corresponding

point on the other graph. (And similarly, when one graph has a function value of

1, the product is the opposite of the corresponding point on the other graph.)
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When, within an interval, one graph has function values very near 1, the

product within that interval is approximated by the other graph.

Where two graphs cross (that is, their function values are equal), the

quotient is 1.

Useful observations were easy to make, because the basic trigonometric functions are periodic,

with frequent zeros, asymptotes, and relative maxima and minima of values 1 and 1.

Some activities involved the identity sin2(x) + cos2(x) = 1, which had been previously

encountered in the context of sine and cosine as tile coordinates of a point on a unit circle. For

example, students were asked to plot the graphs of y = sec2(x) and y = tan2(x), as shown in

Figura 3. Then by comparing the two graphs, students were requested to write an equation to

express the relationship between the two functions and then to prove algebraically that their

equation is always true. With some discussion among pairs or groups of students, the observed

graphical relationship was described by the equation sec2(x) = tan2(x) + 1 (or some variation).

The relationship was then verified by substitution and symbol manipulation involving the identity

sin2(x) + cos2(x) = 1.

Following this basis of experience, proof of trigonometric identities was formalized and

practiced in the context of the usual textbook exercises.

Figure 3. Students were asked to plot the graphs y = see(x) and y = tan2(x),
then write an equation to express the relationship between the two functions.



The Supplemented Traditional Approach
The Supplemented Traditional Approach (Figure 4) followed the usual textbook approach

to trigonometric identities, with a focus on following examples and practicing procedures. The

teacher introduced the eight Fundamental Identities given in the textbook (Dolciani, Wooton,

Beckenbach, & Sharron, 1980, pp. 545-546), showed examples of how to use the Fundamental

Identities to prove identities in the textbook exercises, and assigned exercises for the students to

practice. In conjunction with these exercises, students participated in the following graphing

activities related to identities:

Plotting a variety of trigonometric functions and recording equivalences.

Simplifying trigonometric expressions and using graphs to verify the

equivalence of the original expression and the simplified expression. This

technique was useful for finding errors in symbol manipulation - -if the graphs

showed the original and final expressions to be not equivalent, intermediate steps

could be graphed in order to locate errors.

Graphically determining whether given equations were identities. Students

were asked to prove those that graphically appeared to be identities.

Traditional Approach

to

Trigonometric Identities

Related

Graphing Activities

Figure 4. The Supplemented Traditional Approach.

The Comparison Study
A study was imbedded in the normal classroom instructional sequence for trigonometry.

The subjects, 30 students in grades ten through twelve, had completed the introductory

trigonometry material from their textbook (Dolciani, et a1.,1980, Chapter 14) and were ready to

begin identities. Subjects were divided randomly into two treatment groups. One group used the

Graphical Foundation (GF) approach; the other, the Supplemented Traditional (ST) approach.

Results of a posttest indicated no significant difference in the two groups' performance on

the standard content of proving trigonometric identities, but a significantly higher (p = .010)

posttest performance for the Graphical Foundation Group on relating trigonometric functions to
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their graphical representations. Complete statistical results and further discussion are presented in

Dugdale (1989).
As might be anticipated, the initial symbol manipulation work of ST subjects was generally

more standard than that of GF subjects. GF subjects exhibited more variety and personal

involvement in their methods. There was also a noticeable difference in the graphs drawn by the

two groups during their computer activities. ST subjects tended to produce more uniformly neat,

accurate, and properly labelled graphs. In contrast, OF subjects were more likely to produce

sketchy, sometimes incomplete, graphs. ST subjects appeared to regard their graph drawing as the

final goal of the activity, whereas GF subjects approached the task more as scratch work on the

way to a solution.
GF subjects showed higher posttest performance in relating functions to their graphical

representation, despite the fact that ST subjects were exposed to more graphical representations.

For example, ST subjects drew the graphs of 18 different equations, 6 of which were on the

posttest. In contrast, GF subjects drew the graphs of only 7 equations, one of which was on the

posttest. ST subjects did routine work with many graphs, while GF subjects were involved in

more thoughtful work with fewer graphs.

In addition to using graphical representations as the foundation for trigonometric identities,

the Graphical Foundation Treatment was intended to involve students in:

Experiencing active participation in the development of mathematical ideas.

Students were to predict and figure out, rather than follow examples, copy graphs,

and have ideas explained.

Building a qualitative perspective before formalizing procedures.

Trigonometric identities were introduced graphically, and the usual symbol

manipulations were used to verify the relationships observed in the graphing

activities.
Applying previous knowledge and skills to a current problem without being

told what, in particular, to do. Students were to decide what of their previous

knowledge was applicable and devise convincing arguments for observed

equivalences. Students were involved in learning more generally-applicable inquiry

techniques in addition to basic content.

The results of this study suggest that a graphical reasoning approach, with careful attention to

students' experiences beyond the immediate contentgoals, can produce a richer learning experience

without significant detrimental effect on the mastery of standard content.
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Visualizing Polynomial Functions

Although polynomial functions are often expressed graphically, and the graphs are

sometimes used effectively in solving problems, there is little mathematical reasoning apparent in

standard treatments of the relationship between the terms of a polynomial function and its graph.

In courses prior to Calculus, graphs of polynomial functions of degree greater than 2 are typically

approached with a set of rules, most of which must be accepted on faith. (See, for example,

Brown & Robbins (1984, pp. 62-64) and Wooton, Beckenbach & Fleming (1981, pp. 213-219).)

A computer-interactive approach to polynomial graphs was developed to reduce emphasis

on memorized rules in favor of qualitative understanding of functional behavior, visualization of

functional relationships, and graphical investigation of mathematical ideas. The Monomial Sums

Approach is based on the following ideas:

Just as a polyn -frnial is a sum of terms of the form axe, the graph of a

polynomial function can be visualized as the sum of the graphs of monomial

functions y = axe.

The effect of each term of the polynomial function can be predicted in the

graph of the entire function.

The lowest-exponent term dominates the graph nearest the y-intercept (where

x = 0), each higher-exponent term shows its effect in turn as x increases in absolute

value, and the highest-exponent term dominates the extremes.

Some of the usual rules for polynomial graphs, such as dominance of the leading term, are readily

apparent within this approach. Ideas about turning points, x-intercepts, and symmetries, as well as

some of the more advanced theorems (for example, Descartes' Rule of Signs) are accessible

through investigation. A more extensive discussion of the Monomial Sums Approach and its use

appears in Dugdale, Wagner, and Kibbey (in press).

Approaching polynomial graphs as sums of monomial graphs is an old idea. (See, for

example, Gibson (1905, pp. 108-110).) The use of such a method today is not motivated by the

need to construct the graph of a function. Rather, in conjunction with appropriate function plotting

software, visualizing polynomial graphs as sums of monomial graphs can be a convenient

conceptual aid for understanding the behavior of these functions and their graphs.

The Monomial Sums Approach and associated software evolved over the course of two

school years, with the participation of high school students enrolled in Advanced Algebra and

Analytic Geometry classes. The students' classwork had already included some introduction to

graphs of polynomial functions. Before beginning the Monomial Sums Approach, students were

observed to depend largely on memorized rules for relating polynomial functions to their graphical
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representations. When the rules were not clearly remembered, students would ask someone the

rules or look up the rules. In cases where the available rules offered no help, students resorted to

random guessing.
To begin visualizing polynomial functions as sums of monomial functions, students were

asked to use the graphs of two monomial functions to predict the graph of their sum. For example,

after using the microcomputer to plot the graphs of two monomial functions, y = x5 and y = x2,

students could be asked to predict the graph of their sum, y =x5 + x2. Comparing their predictiom

to a computer-plotted graph of y = x5 + x2, students could see which features of the graph they had

predicted well and which features they may have missed.*

The purpose of the prediction activity was not to build proficiency with adding coordinates,

but, rather:
to lay a foundation for thinking ofpolynomial functions as sums of monomial

functions, and

to observe that the resulting function is dominated by the lower exponent term near

the origin, and by the higher-exponent term for larger absolute values of x. (See

Figure 5.)

Figure 5. The graphs of two monomial functions, y = x2 and y = x5, and the

graph of their sum, y = x5 4- x2. The sum is dominated by the lower

exponent term near the origin, and by the higher-exponent term for larger

absolute values of x.

*Note that this is not the best context in which to introduce the notion of using two graphs

to predict the shape of a third graph, because polynomial graphs quickly become very steep as x

increases in absolute value. Students who had experienced prediction with other types of graphs
(for example, the trigonometric graphics discussed earlier) were better prepared to deal with this

activity.
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The dominance of the lower-exponent term was surprising to students, but the reason for it

was apparent from the prediction activityfor x-values near zero, the higher-exponent term is

nearly flat, so that its contribution to the sum is negligible. The implications of higher exponents

producing smaller function values for x between 1 and 1 was more persistently troublesome for

students than the other ideas involved in building sums of monomial functions. For example, it

could be perplexing to notice evidence that x2 is sometimes greater than xf, even after discussing

and using this property in earlier activities. By using this idea throughout their work with

polynomial graphs, students became accustomed to its reality, although encounters in various

contexts seemed necessary in order for the concept to "fill out." In general, progress with concepts

seemed to depend on thinking about the graphs from various perspectives, questioning seeming

contradictions, relating current instances to previous observations, and working toward an

integrated understanding.

Through prediction activities and guided exploration, students investigated the effects of

individual terms of a polynomial on the overall graph of the polynomial function. Students also

constructed polynomial functions to produce desired features in graphs. For example, in Figure 6

a graph is shown, and students are asked to build a polynomial function to match the graph. For

this type of activity, the Monomial Sums Approach facilitates a solution process beginning with the

lowest-exponent term and working outward from the y-axis, leaving the highest-exponent term

until last, as shown in Figure 7.

Figure 6. Students are asked to build a polynomial function to match the
given graph.
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Figure 7 shows a student's solution process for matching the graph given in Figure 6. In

the first frame the student has chosen a constant term of 1 and has verified that the graph of

y = 1 defines the y-intercept of the given graph. The graph near the y-intercept is quite straight,

suggesting a straight line, or linear term in the polynomial. Estimating the slope of the suggested

line to be about 2, in the second frame of Figure 7 the student has chosen to add a linear term of

2x. The resulting graph, y = 2x 1, approximates the target graph very well near the y-intercept.

The remaining task is to add a term which will pull the ends of the graph up steeply.

1.

Y = -1

V=X64.2X-1

W=2X -1

V=2X6+2X-1
Right!

Figure 7. Constructing a function for the graph presented in Figure 6, a

student has proceeded, one term at a time, from the constant term to the

leading term.
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In the third frame of Figure 7, the student has added x6, producing the graph of

y = x6 + 2x 1, which is very close to the target graph. The sides need to be stretched even

steeper, which suggests that a higher exponent or a larger coefficient is needed on the leading term.

Using this diagnostic information, in the fourth frame of Figure 7, the student has matched the

target graph with y = 2x6 + 2x 1. Students often used a combination of this "lowest exponent

first" approach and the more standard "leading term first" approach, depending on the particular

problem.

Various investigations are natural extensions of the Monomial Sums Approach. For

example, ideas about turning points and x-intercepts can be approached by graphing a leading term

and then adding successive terms to produce turning points. In order to have turning points, some

terms of the polynomial need to pull the graph up, while others pull it down. Furthermore, the

graph must be pulled alternately up and down. Hence, by manipulating the exponents and the

signs of the terms in a polynomial function, it is possible to make turning points to the left of the

y-axis, to the right of the y-axis, or on both sides. For example, as shown in Figure 8, the graph

of y = 4x5 + 16x4 + 20x3 + 8x2, with alternately even and odd exponents and all positive signs, is

pulled alternately up and down to the left of the y-axis, but it is monotone increasing to the right of

the y-axis.

Given the relationship between turning points and x-intercepts (how many times the graph

goes up and down is related to how many times it can cross the x-axis), this is also a good

foundation for approaching Descartes' Rule of Signs: The maximum number of positive real zeros

of the polynomial function P(x) is the number of changes in sign of the coefficients in P(x), and

the maximum number of negative real zeros of P(x) is the number of changes in sign of the

coefficients in P(x).
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V =4X5 +16X4+20X3 +8 X2

Figure 8.. The graph of y = 4x5 + lfie + 20x3 + 8x2, with alternately even

and odd exponents and all positive signs, is pulled alternately up and down to

the left of the y-axis, where even-exponent terms pull it up and odd-exponent

terms pull it down. However, the function is monotone increasing to the right

of the y-axis, where all terms pull it up.

The graphical reasoning engaged in by students pursuing various investigations is

important for both:

providing a qualitative basis for understanding the behavior of polynomial

functions, and

promoting a habit of mathematical reasoning and investigation in general.

Conclusion

This paper has explored the potential of function-plotting software to facilitate mathematical

reasoning and visualization of functional relationships in two contexts: trigonometric identities and

polynomial functions. For both topics, new instructional approaches were designed to involve

students in using graphical representations to investigate properties of functions. In contrast to the

traditional procedures of rules, examples, and practice problems, the new approaches were

designed to encourage:
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qualitative understanding of the behavior of functions,

mathematical reasoning and investigation (with particular emphasis on graphical

reasoning), and

active participation in the development of mathematical ideas.

Students using the new approaches showed increased proficiency in relating functions to their

graphical representations, increased reliance on mathematical reasoning, and decreased dependence

on memorized rules.
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Discussion of Professor Dugdale's Paper:

Sakitani: Thank you for your very nice presentation with a beautiful voice. Now let's discuss

Professor Dugdale's presentation.

Fey: Sharon, it seems to me that the difficulty you just mentioned, and you mentioned it at

several points in your talk, about students somehow not ever admitting to themselves

that squaring or cubing could make a number smaller is something that we've

observed too. The graphical message doesn't connect to the numerical message

unless you really work on it. And I wonder whether you thought at all about

something comparable with tabular representation of functions. I guess it's a little

harder to imagine how you'd do it, but it seems like students can almost learn to play

this game with these x2, x3, x4, x5 and the graphs without having the kind of internal

representation that we think they're having with it. That's more of a comment I guess

than a question, but it seems to me that I think Frank's work numerical approaches to

things was based on a feeling that students need to have that numerical rich

experience or else the symbols and the graphs are connected in a purely abstract way

that's problematic for a lot of students.

Dugdale: Yes, I certainly agree with your comment. We started with graphical exploration and

used it to raise the question of why squaring or cubing a number can make it smaller.

We had students resolve the apparent contradiction by numerical investigation. Each

time this confusion came up, and it came up several times with the same student, we

would recall the numerical investigation. Sometimes this required only a simple

reminder, such as "remember what happens to one-half when you raise it to a higher

power." It did seem necessary to be going back and forth between the graphical and

numerical representations. The surprise to me was that we had to keep going back

and forth between the two as long as we did. Of course, after a while our reminders

became unnecessary. The students were noting the problem and resolving it for

themselves, but it did seem that the graphical and numerical ideas needed to be

connected and they had trouble staying connected. They kept becoming

disconnected.

Fey: I think that's a caution to us when we use graphs, a very serious problem.

Damarin: I seems to me that that's also a place where since we're now working in increasingly
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computerized environments, we ought to make more specific as an objective in the

earlier grades the idea that kids would learn that multiplying fractions less than one

decreases rather than increases the product and it is a place where we could make very

good use of drill and practice and simple game type software.

Dugdale: I agree with that and I think you have pointed out very well that a primary reason why

students have this particular difficulty is that they have not encountered the idea in any

definite earlier in the curriculum. I would speculate further that such ideas are absent

from the lower grades because they are received as unnecessary complications, not

applicable to anything immediately coming up. This may be a problem of

communication between the lower grade curriculum and the upper grade curriculum

as far as getting necessary concepts in place because they are needed later.

J. Wilson: This area is one in which there has been a considerable amount of research with

adolescents. In their notions, in particular the misconception, that dividing by a

number always gives a smaller amount. Once a misconception is learned it's awfully

hard to erase it and this misconception is there because of so much drill and practice

of the wrong thing. We've got to be very careful about what students are learning.

Fischbein's work proposes that there is a dominance by a primitive model of division

that kids learn and they learn the wrong thing and that they never have to enlarge their

notion of division. They always rely on the party model for all the drill and practice

and all the kinds of exercises we have in school curriculum. We need to be very

careful and we need some careful research about what's going on as kids develop

these ideas. I'm not a researcher at the upper elementary and the adolescent levels,

but the people there need to be looking at these models and this business that we're

looking at here with the graph is further evidence that the misconception stays with us

a long time. Now, Turrow and her colleagues have done some work with creating

cognitive dissonance situations and the kind of practice that follows that then would

cause students to start questioning what they are doing and it's somehow the idea is

that the dissonance needs to be pretty strong at the right level to get them to overcome

the misconceptions that are habituated. I'm not disagreeing with what's been said,

but I'm saying that there's a much deeper problem here and a much more pervasive

problem.

Dugdale: Along with that there is also the tendency to try to avoid misconceptions or

confusions by having apparent contradictions never arise and not having to deal with
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them. Students do not learn how to deal with what seem to be inconsistencies. They

do not learn to ask the appropriate questions and make the necessary investigations to

figure out what is happening. We need to foster these skills early in the curriculum

and all the way through, so that students make a habit of dealing constructively with

these dissonances. Of course, when a teacher is interacting with a class for only one

year, it it easier to avoid these problems than to be the one who first brings them up

and starts the process of learning how to deal with them.

Hashimoto: The educational considerations of the teachers is very important. For instance, in the

case of the graphing problems certainly the visualization of those equations is very

important but, in your case, you show the degree 5, degree 6, and very high degree

polynomials. Is it really necessary? While if it were me, I would rather concentrate

first on the degree 3 polynomials and give a lot of different types of 3rd degree

polynomials. And then probably the students will realize that you can divide this into

mainly three types/groups: y = x3, y = x3 + x, and y = x3 x . And then you can go

on to, say, the fourth degree polynomials; then students might realize that they cannot

be dividing into the different types/groups.

Dugdale: I am not sure whether this is a question of whether it is necessary to do polynomials,

or a question of how to do polynomials.

Hashimoto: I'm talking about the higher degree polynomials. I said after fourth degree, but fifth,

sixth too.

Dugdale: All right. We deliberately started with enough possible terms to make a lot of

different combinations, because we didn't want it divided up into specific cases. The

students had already done linear equations and quadratic equations and had some

introduction from their textbooks to general polynomials. We wanted something

general enough to require more thinking about the graphs than simply categorizing

each graph as looking like x3, x3 + x, or x3 x. I think some of what Mr.

Hashimoto is talking about is what we were deliberately trying not to have our

students doing. Whether our way was better I don't know, but it was deliberately

different.

Fashimoto: Would you repeat once again what you're really expecting from the students? What

the main goal is of this teaching?
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Dugdale:

Hashimoto:

Dugdale:

Pateman:

Dugdale:

The main goal was to investigate how the terms of a polynomial function relate to the

shape of its graph, with emphasis on the effect of each individual term being apparent

in the shape of the graph. This was devoloped from the perspective of a polynomial

as a sum of terms, and the graph of the polynomial as the sum of the graphs of those

terms.

What can you say about the relationship with the differential integral calculus?

We have not yet pursued the effects of this work on students' later experience with

calculus. It is certainly our hope that visualizing polynomial functions and

recognizing the effect of each term will provide valuable intuitive background for

treatment of polynomial functions in the calculus.

This seems a good time to ask this: Given the capacity of the computer for both

single manipulation and providing visual images, should we accept traditional content

as unquestioned? And I think identities is a case in point. I'm wondering whether

we should go through the gymnastics on the computer to treat that piece of traditional

content or should we ask what its place is in the curriculum?

This question has certainly been raised. I believe the NCI'M Standards advocate

reduced emphasis on trigonometric identities, particularly the exercises in proving

complicated identifies. However, I don't know that there is much agreement that the

notion of identities should be omitted; I would question that. I think that the is of

identities is still important. As a topic that traditionally involves no graphical

representations, trigonometric identities provided a convenient context for comparing

two approaches using graphs: one developing a graphical foundation, and the other

simply adding graphing activities to a traditional approach. This work is not intended

to imply that trigonometric identities should get increased attention. In fact, our

graphical foundation approach did not carry proof of identities as far as the traditional

course does. This de-emphasis of proving complicated identities may account for

what was not a statistically significant difference, but a slight difference between the

two treatments in favor of the standard treatment in having students gain facility with

the ususal symbol manipulation of proving identitites.

Sakitani: I'm sorry, but we have gone over our time by 10 minutes. So, I'll stop the
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discussion and thank Professor Dugdale for the interesting presentation and a lively

discussion.

End of discussion
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Discussion

Becker:

Sawada:

Dugdale:

Choate:

Sakitani:

Teague:

of Working Group - Software Demonstration (U.S.):

We have some time left, so Professor Miwa and I thought we could use it for

discussion. Are there some questions to ask Sharon, Dan or Jon? Mr. Sawada.

For students who have played with this game, and you have had some experience

with them now, what sorts of universities do they get into and do they tend to major

in math?

I wish I could answer that. In general we have not traced students to see what

universities they attend or what majors they choose. I do know, however, for the

pair of students who initiated the very intricate explorations after which the rational

functions part of this program is modelled: one of them dropped out of high school

(laughter) and the other one became an engineering student at the University of

Illinois. The student who dropped out of high school enrolled a year later in a local

community college, and I don't know whether he continued beyond that level.

Overall our experience suggests that we have some very bright students who are

capable of doing creative things who do not find the current high school situation

sufficiently motivating to keep them actively involved (even though most do not leave

school). This kind of activity can help reach students who are not being reached by

the regular curriculum.

I'd just like to add to that. We've used this program for years and I think it's more

significant for the weaker student. We've had many students who were not interested

in mathematics, really had a wonderful time with this game, and I think it really made

them much more interested in mathematics. The other thing is that we had a student

who just graduated from Brown University who majored in applied mathematics and

he came up with probably the most creative solution that Groton School has ever seen

to the expert game.

I've seen the software that Professor Teague was showing earlier and I could see

how it would be very useful for teachers. I think there must be some real problems

with giving the software to students; if you've given students the software, what

happens?

Well, it's a problem for the teacher only in a limited extent. I have to think differently
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about how I teach. My teaching cannot be limited to techniques of solution because

those solutions are available at the touch of a finger. I need to teach more about what

questions to solve, where do functions crme from, what function do I want to graph,

not so much how to graph it. And I need to find different questions to ask to test

what they know. It makes my job very, very different. And rd like to add that we

certainly don't have the answer, we don't know the best way to approach it, but we

will not pretend that the software doesn't exist - it's there, it's available and we need

to learn how to do it properly rather than keep it from the students.

Miwa: We are very much impressed with the software shown today. If you have any

questions, we still have time for further discussion.

Choate: May I make one brief comment. Most of the software you have seen is for secondary

school mathematics and beyond. There is software for elementary school

mathematics in the U.S. too, but you just haven't seen any today - the people who

came have more specialty at the secondary level; but don't get the impression that

everything we do with software is only at the secondary level.

Uetake: We haven't seen any software you demonstrated which deals with three dimensional

figures. Is there any?

Martin: There are some programs that are for more general use by lots of audiences - not just

specifically for education; but there's also a program called "Visual Images" by Allen

Hoffer which allows you to manipulate solids and look at cross-sections and rotations

and so on.

Choate: I have a copy of 3-D Images which we are presenting to the Japanese delegation and

I'll be glad to demonstrate that at some time during a break. We now have a

Macintosh out in the hallway, so anyone who would like to see a program which

rotates figures or which takes figures and passes them through planes, as Gary just

mentioned, I'll be glad to demonstrate that for you.

Wilson: Derive, that we saw demonstrated, will do 3-D plots and Theorist which has not been

demonstrated also has 3-D animation.

Demana: We also have a piece of software called Master Grapher that has 3-D option and Jim
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has that on his machine. That's a function plotter, it plots functions of two variables.

Sawada: One thing that I think is very useful is that in America there seem to be basically IBM

and Macintosh as the two standards. In Japan we have many smaller hardwares; so,

even if you develop software, it doesn't spread very widely because of the multitude

of hardwares. I would like to know roughly what's the division between Mac and

IBM now?

Choate: My understanding, and the university people can correct me if I'm wrong, is that the

universities still are predominantly MS DOS IBM. For secondary schools there's a

split between IBM and a lot of Apple Us and that more and more schools now are

beginning to use Macintoshes. If I would guess at the number of types of compute-is

in schools and universities, I would suspect that the majority at the university level

are IBM or IBM compatible, and at the secondary level either Apple II or Macintosh

are the predominant machines. That's my guess.

Dugdale: I would add to what Jon says that the computers in elementary schools are still

predominantly Apple II, and I expect that it will stay Apple II for quite a while,

simply because when school districts have money to buy the newer machines, IBM

or Macintosh, they tend to put those in the secondary schools and move the old Apple

Us into the elementary schools.

J. Wilson: The latter comment is certainly the pattern in Georgia. Apple Us predominate and as

new machines are purchased the Apple Us are going down in the grade level. I'll just

add a comment though, we find quite a few of the secondary school systems going to

IBM, not only IBM, but IBM proprietary software - the whole budget goes into an

IBM setup. It tends to be system-wide decisions that are made by the central

administration in every case. At the university level, at our place, we have a mixture

of those machines and we also have the ? operating system. Somehow all of this

is going to tie in and for thirty years ? has been going to unify things for us but

we're still waiting, but many of the networking situations now that we're getting into

like the Sun systems that will drive remote stations has to be on a ? base, but you

still operate, say your Macintosh or your PC, in its own language even though it's

tied into the ? system. But there's much more coming at the university level with

more intensive computing like ? 6000 and things like that that are on a ? base.
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Fujii: When you want the kids to take software home to play with or to use on their own

computers, you probably can't make copies for them, so what do you do?

Wilson: In some cases, depending on the software, you'd purchase a site license which

allows you to make copies. I think Sunburst has a pack they sell in which you have,

say, 30 copies that you can have in a library; but certainly there are concerns of

copyright that must be adhered to and in the software that we use most widely is site-

license purchase.

Demana: The software we developed called MasterGrapher, we've been able to keep the price

extremely low by marketing through Addison-Wesley. For example, it goes free

with our textbooks. Site licenses are $300 and in those cases students can make

copies and take them home or use at school, so there are some softwares like that

which you can keep and if you battle the publishers, the publishers want to charge an

arm and a leg, but you can keep the price down and use site licenses and allow

students to take them home.

Uetake: For the software we've seen today, it doesn't look like the sort of thing you can use

immediately with a glance at the manual. It seems as if it would require a certain

amount of teacher education and training. Would anyone care to speak to that?

Choate: I think I presented probably the most far out piece of software. In fact, I suspect

there are members of the American delegation who haven't seen it. The training

comes from taking courses at conferences. A few colleges have courses in how to

use that type of software in the classroom. I think the predominant way that someone

would learn about it would be to go to one of the National Council of Teachers of

Mathematics conferences or several other conferences around the country, that show

people how to use it.

Demana: Most software have a manual that goes along with it that details very carefully how to

use it and most of the time how to use it to do mathematics or whatever it's spelled

out to do. And sometimes there's a package which includes lesson plans, so there is

that ability too; for example, with Master Grapher we have plenty of detailed

instructions of how to not only graph functions in three dimensions but even

mathematical examples of how to use it in a classroom.
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Teague: I think that the more flexible the software, the more different things it does, the hander

it is to start using. Some software we've seen does one thing, rolling a rectangle for

example; it does one thing and so it's fairly easy for a teacher to pick it up and hit the

space bar and go from one thing to the next. Software like Derive that does many,

many different things is going to be harder to learn to use because there are many

more commands to learn.

Martin: I would just add that I think especially with a lot of the programs designed on the

Macintosh, they are designed to be open-ended and very fluid so you can begin

playing with them very quickly; for example, with the Sketchpad I just tried things

and learned. Eventually I got around to reading the manual to see if there were things

that I was missing but, in general, with the Macintosh programs you can begin

working very quickly because of the standard interface. I think the bigger issue than

that is in some sense instilling a philosophy or helping teachers to see the rationale

and how a program can impact with what they're doing.

Kumagai: T have two questions. First of all, what sorts of people are developing software?

And second, is there any sort of a rating or evaluation organization for all the

software?

Demana: I'm not sure I can answer all the questions, but there are reviews put in the

Mathematical Association of America publication called The Notices which has a

column on computers and evaluates software regularly with each issue. There's a

college mathematics journal that does the same thing, has a column and reviews

software on a regular basis. Software developers cut across the range of spectrums

from school teachers to formal companies that try to put it together.

Damarin: At the level of kindergarten through twelfth grade, for elementary, secondary, and

high school software, there are a couple of organizations, one publicly funded and at

least more than one privately funded that can hire reviewers. Probably the most

famous of those is APCE, which is a private organization and one can acquire

software reviews over a computer based bulletin board - you can interface through

your modum and get software reviews from them. Many teacher magazines also

publish software reviews. parent =gone publishes software reviews and, in fact,

gives awards for software. And then there's an organization called Only The Best

which takes all of those reviews and creates a list of only the best. So, I guess the
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main message is there's quite a software review endeavor. Even so, each school

district feels the need to do its own software review. So it's quite a complex.

Sawada: In Japan when you're selling software to teachers, what happens often is that teachers

use it two or three times and then get tired of it and want to start modifying it

themselves. This may be more difficult in the United States, but is there a

development of software which is essentially customizable, which can be changed in

small parts?

Choate: I think this brings up a major issue. A lot of the software in the United States is

software that allows you to do a lot of different things. Let me give a very specific

example: if I wanted to do the lesson with a rotating rectangle which we have seen, I

would do that using the geometer's Sketchpad. And I think if you look at the

software used in the United States now, we've developed a lot of tools with a lot of

flexibility that in a sense allows the teacher to build the lessons. I think what's

happened is the tools are getting easier and easier to use because if you look at

American textbooks and go back about six years, they used to have included in them

lines of BASIC programming language. They don't have those anymore and now

instead of referring to a programming language theyrefer to a tool like the Geometric

Supposer or Green Globs or the Geometer's Sketchpad or Derive. And I think what

you'll probably see is the development of these tools, once you have an idea of what

you need in a classroom for achieving this sort of open- endedness that you'd like for

the teachers to take and change. And what will happen is people will start developing

modules within a tool that they can then change.

Miwa: I am very sorry to have to stop this session. We have had very useful discussion.

Thank you for your cooperation.

End of Discussion of Working Group
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Mathematical Visualization in Problem Solving
Facilitated by Computers

Your problem may be modest; but if it challenges your

curiosity and brings into play your inventive faculties, and if you

solve it by your own means, you may experience the tension and

enjoy the triumph of discovery. Such experiences at a susceptible

age may create a taste for mental work and leave their imprint on

mind and character for a lifetime. (Polya, 1944, p. v.)

Using Computers

There are many uses of computers in doing mathematics, teaching
mathematics, and learning mathematics. Computers and the software for them are
marvelous tools. And just as I would have a variety of tools in my workshop for
various tasks, I want an array of software, computers, and calculators available to
select from, as appropriate, for a particular task.

The variety of uses includes

preparation of instructional materials with word processors,
sketching programs

writing computer programs for problem solving
'classroom demonstrations
mathematical investigations (for teacher or student)

student uses during instruction
student use for assignments/homework
recreation and games
record keeping
using applications
drill and practice

In my presentation, I will concentrate on activities that might be used
for classroom demonstration or for mathematical investigations.
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Mathematical Visualization

The ability to visualize mathematical relationships is an essential part of
many people's knowledge of mathematics and their facility in communicating ideas
about mathematics. Computers enable us to extend this capability. In my
presentation I will discuss some activities at the University of Georgia as examples
of using computers in the teaching of mathematics or in using computers as a tool

to explore problem situations. These activities include dasses I teach on
mathematical problem solving for secondary teachers, classes for prospective
elementary teachers, work with inservice teachers (who in turn may be using
computers in their classes), work with graduate students who are engaged in

teaching and research, materials development projects, and prototype planning with
engineers from Georgia Institute of Technology.

I have provided several background papers. One is a research review by Earl
Bennett. Others are problems presented from explorations which I might like to

show here but will not have the time to do so. My presentation will concentrate on
example problems. Some of this material will be part of a forthcoming synthesis of
problem solving research by Wilson, Hadaway, and Fernandez.

Problem Solving

It is useful to have a framework to think about the processes involved in
mathematical problem solving. Most formulations of a problem solving
framework in U. S. textbooks attribute some relationship to Polya's problem solving
stages (1945). These stages were described by 1) understanding the problem, 2)
making a plan, 3) carrying out the plan, and 4) looking back.

Polya also stated that problem solving was a major theme of doing
mathematics and when he wrote about what he expected of students, he used the
language of "teaching students to think" (1965). "How to think" is a theme that
underlies much of genuine inquiry and problem solving in mathematics.
Unfortunately, much of the well-intended efforts of teaching students "how to
think" in mathematics problem solving gets transformed into teaching "what to
think" or "what to do." This is, in particular, a byproduct of an emphasis on
procedural knowledge about problem solving such as we have in the linear
framework of U. S. mathematics textbooks and the very limited problems/exercises
included in lessons.
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Thus a teacher of mathematics has a great
opportunity. If he fills his allotted time with drilling
his students in routine operations he kills their
interest, hampers their intellectual development,
and misuses his opportunity. But if he challenges
the curiosity of his students by setting them problems
proportionate to their knowledge, and helps them to
solve their problems with stimulating questions, he
may give them a taste for, and some means of,
independent thinking. (Polya, 1944, p. v.)

Clearly, the linear nature of the models used in numerous textbooks does not
promote the spirit of Polya's stages and his goal of teaching students to think. By
their nature, all these traditional models have the following defects:

1. They depict problem solving as a linear process.
2. They present problem solving as a series of steps.
3. They imply that solving mathematics problems is a

procedure to be memorized, practiced, and habituated.
4. They lead to an emphasis on answer getting.

These linear formulations are not very consistent with genuine problem
solving activity. They may be consistent with how experienced problem solvers
may present their solution and answer after the problem solving is completed. In
an analogous way, mathematicians present their proofs in very concise terms, but
the most elegant of proofs may fail to convey the dynamic inquiry that went on in
finding the proof.

There is a dynamic and cyclic nature of genuine problem solving. A student
may begin with a problem and engage in thought and activity to understand it. The
student attempts to make a plan and in the process may discover a need to
understand the problem better. Or when a plan has been formed, the student may
attempt to carry it out and be unable to do so. The next activity may be attempting
to make a new plan, or going back to develop a new understanding of the problem,
or posing a new (possibly related) problem to work on.

The following framework is useful for illustrating the dynamic, cyclic
interpretation of Polya's stages. It has been used in my mathematics problem
solving course for many years.
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Any of the arrows could describe student activity (thought) in the process of
solving mathematics problems. Clearly, genuine problem experience in
mathematics can not be captured by the outer, one-directional arrows alone. It is not
a theoretical model. Rather, it is a framework for discussing various pedagogical,
curricular, instructional, and learning issues involved with the goals of
mathematical problem solving in our schools.

What is mathematics?

If our answer to this question uses words like explore, inquiry, discover,
plausible reasoning, or problem solving, then we are attending to the processes of
mathematics. Most of us would also make a content list like algebra, geometry,
number, probability, statistics, or calculus. Deep down, our answers to such
questions as: What is mathematics? What do mathematicians do? What do
mathematics students do? Should the activities for mathematics students model
what mathematicians do? can affect how we approach mathematics problems and
how we teach mathematics. Moreover, the answer to the title question "What is
mathematics?" is not necessarily the same as our answer to the question "What is
school mathematics?"

Many a guess has turned out to be wrong but nevertheless
useful in leading to a better one. (Polya, 1957, p. 99)

The art of problem solving is the heart of mathematics. What a pity that so
many students never experience mathematics is this way. The NCTM
recommendations (1980, 1989) to make problem solving the focus of school
mathematics posed fundamental questions about the nature of school mathematics.
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Why Problem Solving?

The NCTM (1980,1989) has strongly endorsed the inclusion on problem
solving in school mathematics. There are many reasons for doing this. First,
problem solving is a major part of mathematics. It is the sum and substance of our
discipline and to reduce the discipline to a set of exercises and skills devoid of
problem solving is misrepresenting mathematics as a discipline and shortchanging
the students. Second, mathematics has many applications and often those
application represent important problems in mathematics. Our subject is used in
the work, understanding, and communication within other disciplines. Third,
there is an intrinsic motivation embedded in solving mathematics problems.
Thus, we include problem solving in school mathematics because in can stimulate
the interest and enthusiasm of the students. Fourth, problem solving can be fun.
Thus many of us do mathematics problems for recreation. Finally, problem solving
must be in the school mathematics curriculum to allow students to develop the art
of problem solving. This art is so essential to really understanding mathematics
and appreciating mathematics that it must be an instructional goal.

Teachers often give strong rationale for not including problem solving
activities is school mathematics instruction. These include arguments that problem
solving is too difficult, problem solving takes too much time, the school curriculum
is very full and there is no room for problem solving, problem solving will not be
measured and tested, mathematics is sequential and students must master facts,
procedures, and algorithms, appropriate mathematics problems are not available,
problem solving is not in the textbook, and learning procedural mathematics
should be emphasized in school mathematics so that problem solving can be done
later. There are some teachers and curriculum leaders who argue that drill and
practice with the basics is the first priority of school mathematics, and since many
students have not mastered the basic facts, problem solving should not be
attempted. Finally, there is the deceptive practice of claiming to emphasize problem
solving when in fact the only emphasis is on routine exercises.

Some University of Georgia Activities
Project LITMUS

Project LITMUS is directed by Larry Hatfield and funded by the National
Science Foundation to provide total, district-wide infusion of technology in two
Georgia School System. Over the next five years, Dr. Hatfield and the Project
LITMUS will work with all teachers in the two districts to develop facility with the
use of calculators and computers as tools for mathematics teaching and learning.
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This summer, 47 teachers (some elementary, some middle school, some
secondary) are receiving intensive exposure to computer and calculator use.
These 47 teachers are the Leader Teachers in the district and will each have two
computers (a Macintosh LC and a Macintosh Classic, plus classroom sets of
calculators, etc. to use over the next year and develop their expertise as they use
technology to some extent with their students. In 1992 - 93 and beyond these
leader teacher will have additional training and also have a role in the training of
peer teachers in their schools and will assist with the incorporation of technology
into work with students in their individual schools. The school system has and
the University of Georgia has made a substantial investment in computers and
calculators since these are not funded by NSF.

The philosophy of LITMUS is rooted in using technology as tools to enhance
instruction that has a strong problem solving component. The elementary level
is using some LOGO microworlds developed by John Olive, but for the most part
units are being built around tool software applications such as GSP, Graph Wiz,
Basic, Object LOGO, Smartworks, Excel, etc.

Christopher Columbus Consortium

The Christopher Columbus Consortium is a national "network" of schools
and universities who have been prodded into collaboration by an equipment grant
from Apple Foundation. The University of Georgia is matched with a local high
school, Clarke Central High School, and, in particular, Three mathematics
education faculty, two doctoral students, and nine high school faculty have formed
a team to implement the use of Macintosh computers into mathematics
instruction. There are demonstration computers that reside in the classrooms of

nine of the faculty and there is an "open access" laboratory where students can go
for individual work on the computer or where classes can be taken for group
instruction. In 1990-91, instructional activities with computers took place in
geometry classes using GSP, in algebra classes using Graph Wiz and the
Mathematics Teachers Workstation, and in calculus classes using Theorist.

The purpose of our work in the Christopher Columbus Project is threefold.
First, we wish to develop a framework to introduce teachers to new technology
and new capabilities of the technology as it becomes available. The use of
technology by mathematics teachers has been stymied by a stereotype of using
computers to deliver instruction. This is an unfortunate impact of work in CAI.
We feel the framework of mathematical investigations is an orientation that will
bring about much more potent use of the computer as a tool for exploring and
problem solving. We want to develop a mentality of "what if" and an attitude
that we can use the computer or calculator to find out, make new hypotheses, and
construct mathematical ideas. Second, we want to make teachers comfortable
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with the appropriate use of computers and calculators -- to make these as
comfortable and as ubiquitous as the overhead projector. Our primary focus is on
the teacher's use of the technology to demonstrate and explain. Individual
student use of the technology is a natural extension when made a part of overall
instructional design. Third, we want to nourish collaboration between the
Department of Mathematics in the school and the Department of Mathematics
Education of the university.

Specifically, goals for consortium will include the following:

Preparation of mathematical investigations stimulated by topics in
secondary school mathematics.

Cooperative research on the teaching and learning of mathematics in
the presence of computer tools.

Preparation of illustrations and demonstrations of the use of various
software and technology in mathematical investigations.

Mathematics teachers have little time for digging things out on their own as
new technologies are made available. They need models. Unfortunately, many of
the models of technology use are still throwbacks to stereotypic CAI -- driven by
the mentality that computers can deliver instruction. The Macintosh and many
of the software programs recently made available on it, and the TI-81 calculator,
bring about some new capabilities of the technology. Among these capabilities are
rapid graphics, dynamic programs, animation, and simulation.

Rapid graphics are important in classroom demonstrations. If the drawing
of a curve takes more that a few seconds the teacher may be faced with problems of
keeping a class engaged. If it takes more than a few seconds then there is little
likelihood of examining several examples with changing parameters. Recent
programs such as the Mathematics Teachers Workstation, Graph Wiz, Geometer's
Sketch Pad, or Theorist can meet this requirement running on current machines
(e.g. SE, SE/30, LC, II, llcx, Hsi). For example, multiple graphs such as

r = 3 + 3cos(nt)

can be examined for n = 3, 4, 5, 6 in rapid succession. The graph for n = 15 can be
drawn in a matter of seconds to verify the student's prediction of the number of
"loops" or "petals." It can also be drawn for n = 3/5 -- bringing into question most
textbooks label of the "n-leaf rose" -- or n = 1/2, 1/3, 1/4 . . . Or, what about
changing the 3 coefficient of the cos(at) term and produce a graph like this:
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R(t) = 3 + 2cos((7/ 3) t)

And, the students, or the teacher, can contrast all these results with

r = 3 + 3sin(nt)

or r = 3cos(nt)

or r = 3sin(nt)

Teachers need to understand the capabilities of different software programs.
For example, the investigation above would work well with the Mathematics
Teacher Workstation (MTW) or Theorist. A menu in the MTW makes available

the graphing of polar equations and the parameters can be set to allow any number

of revolutions in drawing a graph (for n an integer, one revolution is needed; for

n =a/b, b revolutions are needed (a,b) =1). Graph Wiz, on the other hand, could
not be used to make these graphs for non-integer n.

The Geometric Supposer (triangles) and the Geometer's Sketch Pad allow

dynamic investigations. For example, with the Supposer, the teacher might draw

a triangle and its three medians. There is opportunity for discussion of the
observation that the three medians of this triangle intersect in a single point.
Then measure of each median and the distance of the intersection from the

opposite side can be obtained and the ratio computed. Again, discussion can focus

on the result that the ratio is 1/3 for each of the three medians. Now, the dynamic
aspect is in the "Repeat" function. The software allows using the mouse to
relocate the vertices of the triangle (1, 2, or all 3) and repeating the construction
and measurement in a new triangle. And another. And then the students can be
led to investigating particular triangles such as isosceles or right triangles.
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The Geometer's Sketch Pad is less user friendly but has many more
capabilities. For example, the program can be used to construct the orthocenter,
centroid, incenter, and circumcenter in the same triangle. What happens to these
four centers as the shape of the triangle is changed? The mouse can be used to
move a vertex and all of the other relationships in the drawing change with it.
Thus if all triangles on a fixed base having the same area are examined (e.g. move
the third vertex along a line parallel to the base) all of the following can be
observed and conjectured:

. . . the circumcenter moves in a locus orthogonal to the base . . .

. . . the centroid moves along a line parallel to the base . . . and . . .

. . . the orthocenter moves along a locus that is a parabola that goes thru . . .

. . . the incenter has a strange looking curved locus . . .

. . . the circumcenter, centroid, and orthocenter are always colinear .

. . . the centroid is always between the other two . .. except when . . .

. . . the distance from the centroid to the orthocenter is always twice the
distance from the centroid to the circumcenter . . .
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. . . the line segment from the orthocenter to the circumcenter does a "flip"

about the centroid as the third vertex is moved from side to side . . .

. . . the center of the nine-point circle . . .

This Livestigation can be set up and done in a few minutes. All of the

computations and drawings are instantaneous. This is, of course, the Euler line

of a triangle and its investigation without technology has been outside the realm

of elementary geometry. The Geometer's Sketch Pad has great potential for
teachers and students to use in investigations of ideas in geometry.
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Given 100 feet of fencing, ...
a. What is the maximum area that could be enclosed in a

rectangular region?
b. What is the maximum area that could be endosed in a

triangular region?
c. What area could be enclosed in a regular hexagon? regular

octagon?
d. What area could be enclosed in a regular n-gon? Explore ...

What happens as n increases?
e. Show that the square has maximum area or any quadrilateral

with a perimeter of 100.
f. Find five triangle with perimeter of 100 having integer sides

and integer area.
g. Find the area of a quarter circle region having a perimeter of

100.
h. Find the area of a semicircle region having a perimeter of 100.
i. What region bounded by two radii and the arc of a circle

having a perimeter of 100 will have maximum area?
No calculus!

j. ETC.

This investigation can continue to grow as students begin to pose their own
extensions of the problems. The whole set of problems of building a pen with the
fencing using some natural boundary can be posed. (Standard fare in calculus, but
better here). Another set of extensions would be to maximize the area of pens
with 100 feet of fencing that includes one or more partitions. For example:

Other WlNGZ investigation;; might flow from simulations around data bases for
a budget, car ownership, income tax, or a business.

Graph Wiz is an application for graphing relations developed by Alan
Hoffer. Most graphing programs require transforming the relation you want to
graph to the form y = f(x), which may be somewhat cumbersome. Graph 'Wiz on
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the other hand constructs the graph from whatever form the relation is in. For

example, the teacher or students might investigate the following graphs by
entering these equations exactly in the form given here:

x2 +y2=1.

3x3 + y = A

4x4 + y =

x5 + y5 = 1

1.5

-1.5
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Seeing these graphs, either singly or concurrently on the same axes, can not
help but generate some guesses for further confirmation. Other software would
not be useful to investigate these relations in "real time" -- that is, say, in the
context of an ongoing class. Graph Wiz also has read-out tools to determine
coordinates wherever the cursor is placed and it has tools for graphing
inequalities.

The Curve Building demonstration paper was done using Graph Wiz to
explore the relation (y2 -1)y = (x2 - 4)x:

Mathematics Teacher Workstation was developed by Ray Carry. It began
development as a function grapher to handle rectangular, polar, and parametric
equations. The Geometric Construction kit was added to give on-screen tools to
simulate ruler and compass constructions. Features were added to provide
retrieval and sequencing of images from the uses of the program. Its parametric
equations grapher is more user friendly than any other software available. The
graph in the demonstration problem on using parametric equations was done
with MTW.

One set of curves for exploration uses the following parametric equations.
x(t) = 4sin((a/b)t)

y(t) = 3sin(t)

various curves can be generated for different a and b, b 0. For example, a = 1
and b = 2 gives the following

360 35



x(t) = 4sin((1/2) t)
y(t) .3sin( t)

Theorist is a very powerful graphics display and symbol manipulator
program. Its power is also a limitation because setting up most investigations
would take too much time for in-class demonstration. It will, however, show
animations and three dimensional images. Prior preparation and set-up can be
saved in a "notebook" (Theorist's word for "file") and then played bad. for class
time demonstrations. For example, one animation demonstrated at Clarke
Central this Fall was to take a curve y = sin(x) and animate a tangent line moving
along the curve. The slope of the tangent line was plotted as a trace, producing y
cos(x) ... This animation can be played back at various speeds, stopped at any
point for illustration and discussion, or extended to other functions.

Georgia Institute of Technology Planning

As Atlanta prepared its presentation to the International Olympic
Committee meetings in Tokyo, the Georgia Institute of Technology staff were
involved in a multimedia presentation built around a model of the proposed
Olympic Village. The presentation was dramatic and many feel it was crucial in
the successful bid for the 1996 Olympic Games. It involved interactive videodisc,
interactive computer programs, and carefully prepared script. Subsequently,
discussions were initiated with University of Georgia faculty in mathematics
education, Georgia Institute of Technology engineering, mathematics, and
architectural design, and technology staff from various industries as to whether
this multimedia technology and the coming fiber optic cable network could be
used in meaningful ways for education. In particular, the group was looking for

361 376



innovative classrooms and innovative curriculum. Discussions continue. We
are discussing innovations that might be available in 1996 or later.

The hardware proposals include development of student datapad/consoles
with video quality images. A classroom, or a group of classrooms, my be powered
by a computer of the RISC 6000 class with an extensive library available to the
teacher console. The teachers console could be divided into up to 16 different to
monitor the work of individual or groups of students. The fiber optic network
would make possible interactive 2-way TV to remote sites. Some prototypes have
been assembled by the Georgia Tech and industry engineers.

The courseware proposals, at this time, are moving toward proposals for 10
to 20 "modules" -- units of instruction -- at the secondary level that could be
targeted toward mathematical visualization. There are other subject materials
under discussion such as science units built from archival material of the
National Geographic. Videodisc materials for adult literacy instruction -- teaching
reading to adults -- are also under discuss as well as delivery of instruction to non-
school sites such as homebound students or to prisons. The current outline of
module ideas is listed in the Appendix 1.

Research Activities

Other than to note the interest and the activity, I will not delineate the
research that is proposed or under way. Several faculty and graduate students are
engaged in LITMUS and the Christopher Columbus Consortium. We have
studies underway and proposed to study the schools, the teachers, and the
students. The review by Bennett is part of an effort to organize studies of how
mathematical visualization capabilities develop in the presence of various
technology.

Materials

Appendix 2 has additional problems and materials I have used with
computer exploration
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APPENDIX 1
Outline of Module Topics

I. PROPERUES OF TRIANGLES

1. Circumcenter/ Perpendicular Bisector of Sides
2. Incenter/ Angle Bisectors (and excenters)
3. Centroid/Medians
4. Orthocenter/Altitudes
5. Other Cevians
6. Euler line
7. Loci problems
8. Nine-Point Circle
9. Pythagorean Relations

II. SIMILARITY

1. Center of Similarity; projections
2. Similarity coefficient
3. 3-D
4. 2-D
5. Dilation see Video Tape from Project Mathematica . . .

III. CONGRUENCE

1. Polygons
2. Polyhedra
3. Etc.

IV. CIRCLES AND SPHERES

1. Arcs
2. Central angle relationships
3. Chords, Secants, Tangents
4. Intersecting circles
5. Great circles
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V. DISTANCE, AREA, AND VOLUME

1. Concepts
2. Formulas
3. Applications
4. Maximization (Minimization) Problems
5. Isoperimetric inequalities and relationships 2-D and 3-D
6. Heron's Formula
7. Brahmagupta's formula
8. Visualization of 4 dimensions

VI. TRANSFORMATIONAL GEOMETRY

1. Basic isometries
2. Coordinatization
3. 3-D translations, rotations

VII. PROJECTIVE GEOMETRY

1. Cross Ratio
2. Desargue's Theorem
3. Pappus's Theorem
4. Pascal's Theorem Pascal Line of a hexagon inscribed in a circle.
5. Menelaus's Theorem
6. Duality

. principle
. . . examples

7. Dual point/line for conics
8. Perspective drawings
9. Drafting basics ... e.g. Mechanical Drawing, perspective

3
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VIII. CONIC SECTIONS

1. 3-D models; 3-D images
. . . Intersection of Plane and double cone

2. Projection of a ring
. . . circle
. . ellipse See Nicollett Films
. .. parabola
. .. hyperbola

3. Animation: directrix and focus
4. Other animation
5. Paper folding
6. Eccentricity coefficient
7. Analytic geometry
. . . Formulas
. . . xy coordinates

... graphs with center at origin

... other
. . . polar equations
. . . parametric equations

IX. POLYGONS AND POLYHEDRA

1. Quadrilaterals
2. Polygons and Regular Polygons
3. Euler's Formulas
4. Platonic Solids
5. Archimedian Solids
6. Model building; nets
7. Projections
8. Stellated Polyhedra

X. TRIGONOMETRIC RELATIONSHIPS

1. Basic concepts
2. Graphs
3. Polar coordinates
4. Complex numbers
5. Applications
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XI. LINEAR ALGEBRA

1. 2-D
2. 3-D

n. Non-linear systems

XII. i IIRATION AND RECURSION

1. Iteration of pattern
2. Iteration of function
3. Use of iterations to find roots
4. Recursive functions
5. Fractals

MIL GRAPHS

1. Functions
2. Relations
3. Discontinuities
4. Composite graphs

f(x) + g(x)
f(x) g(x)
f(g(x))
x = g(x) obtained from f(x) = 0

5. Explorations with Polar equations
6. What if? activities

3 RI
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APPENDIX 2

Additional Problems for Computer Exploration

1. A ladder 5 meters long leans against a wall, reaching over the top of
a box that is 1 meter on each side. The box is against the wall. What is the
maximum height on the wall that the ladder can reach? The side view is:

Well

Ladder, 5m long

Assume the wall is perpendicular to the floor. Use your calculator to find the
maximum height to the nearest .01 meter.

2. How long is the groove on one side of a long-play (33 1/3 rpm)
phonograph record? Assume there is a single recording and the Outer
(beginning) groove is 5.75 inches from the center and the Inner (ending)
groove is 1.75 inches from the center. The recording plays for 23 minutes.

3. Find the maximum area of a trapezoid inscribed in a semicircle of
radius 1.
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Hint: Use the arithmetic mean-geometric mean inequality

4. Exploration

i. Graph x3 + y3 = 3axy for various values of a.

ii. Graph x3 + y3 + b = 3axy for various values of a and b.

iii. Examine the graphs of

(sin(x))3 + (sin(y))3 = 3(a)(sin(x))(sin(y))

for a = 1/2, 5/8, 3/4.

i v. Examine the graphs of

(tan(x))3 + (tan(y))3 = 3(a)(tan(x))(tan(y))

for a range of values for a. What happens when a constant
is added to the left hand side?
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CURVE BUILDING

James W. Wilson

This exploration with graphs of mathematical relations grew out of some
class discussions with prospective teachers as we examined the use of the computer
for graphing mathematical relations. The use of the computer allows us to explore
and conjecture and develop ideas with respect to the mathematical relations and
their graphs.

The particular relation was

(y2 1)y = (x2 4)x

Cursory discussion led to agreement that the curve would cross the y-axis at three
points -- -1, 0, and 1 -- and likewise the curve would cross the x-axis at three
points -- -2, 0, and 2. Also, for large x, y is large, etc. The computer provides
a tool to draw the graph, look closely at particular regions of the graph, and so forth.
It was clear that the interesting part of the graph would be near the origin. Using
Graph Wiz (Hoffer, 1989) the graph was obtained as follows.

A point of discussion was to explore changes in the graph that resulted from
changes in the relation. For example, the following resulted when the 4 on the
right hand side was change to 2. The curve as a somewhat similar shape but is
more compressed, crossing the x-axis at points closer to the origin.
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Why not go further and see what happens when the constant on the right
hand side is I, producing a relation symmetric with respect to x and y? Surely the
symmetry will add some demand to the graph. The result is the following.

(y' i)y = (x2 1)x

The graph now looks like the composite of two graphs -- a line and an
ellipse. It is a single relation, but some algebra either by hand or by symbol
manipulator can lead to a factored form of the equation,

(x y)\(x
2

+xy+y
2

-1/
\ .

and one factor corresponds to the line and the other corresponds to the ellipse.
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Why not reverse this process? Let's begin with two mathematical relations
and consider their product to build a graph. Then coefficients or constant terms in

the product can be changed to build related curves.

Take the ellipse, express its equation, and graph it. For example,

y2+xy+x2 =4

is an ellipse with major axis along the line y = -x and contains the points (0,2),

(0,-2), (2,0), and (-2,0). A graph is in Figure 1.

-3 -1 1 3 4

-1-

Figure 1. Graph of y2 + xy + x2 = 4

Next, consider any line with a graph passing through this ellipse. A simple case

would he y = x. But, rather than graphing the ellipse and then the line as an
overlay, consider the following relation

(y x) (y2 + xy + x2) = 4(y - x)

The graph of this relation will be the ellipse and the line through it. Figure 2 is a

graph of the new relation.
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-4 -3 -1 1 3 4

Figure 2. Graph of (y - x)(y2 + xy + x2) = 4(y - x)

Using some algebra, this latter relation is transformed into

y3 -x3 = 4y - 4x.

A family of curves can be generated by considering

y3 - x3 = ay - bx

where a and b are real numbers. In fact, if a = b and both are positive, then
all that changes from Figure 2 to a new graph of y3 - x3 = ay - bx is scaling. For
example, the three graphs

are shown in Figure 3.

y3 - x3 = 4y - 4x

y3 - x3 = y - x
y3 - x3 = .5y - .5x
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Figure 3. Graph of y3 - x3 = ay - bx where a = b = 4, 1, and .5

Much more interesting, however, are the curves where a # b. For example

the curve for y3 - x3 = 3y - 4x is in Figure 4.

Figure 4. Graph of y3 - x3 = 3y - 4x
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In Figure 5, a = -4 and b = 4.

Figure 5. Graph of y3 - x3 = -4y - 4x

In Figure 6, a = 0 and b = 4.

2-

Figure 6. Graph of y3 - x3 = Oy - 4x
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In Figure 7, graphs for a = .5, 1, 2, and 3 are given for b = 4 in each case.

I

-4

Figure 7. Graphs for a = .5, 1, 2, 3; b = 4

Figure 8. Graphs for b = .5, 1, 2, 3; a = 4
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Perhaps the interesting cases are where a and b are nearly equal. Figure
9 is for a = 3.9 and Figure 10 is for a = 4.1, with b = 4 in each case.

Figure 9. Graph of y3 - x3 = 3.9y - 4x

Figure 10. Graph of y3 - x3 = 4.1y - 4x

Figures 11 and 12 each show a set of curves that can be produced by varying
different coefficients. Each is a set of 21 graphs where a coefficient has been stepped

over 2 units in steps of 0.1. Figure 11 varies the coefficient of the x3 term from 0
to 2; Figure 12 varies the coefficient of x from 3 to 5.
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Figure 11. Varying the coefficient of x3

Figure 12. Varying the coefficient of x
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There is more to the investigation of these curves stimulated by the look at
(y2 - 1)y = (x2 - 4)x, but let us turn our attention to applying the technique of
multiplying relations to build composite curves that can in turn be modified to
build a family of curves. Con,;ider a very simple case, beginning with the equations
for two lines:

y - x = 0
y + x = 0.

The product of the two relations is

(y x)(y + x) = 6

and the graph is

If the product is set equal to some constant other than 0, the graph is a hyperbola
from the family of hyperbolas having these two lines as asymptotes. The
following graph shows the graphs for three hyperbolas in this family. Similarly, if
any other lines were selected, the technique could generate a family of hyperbolas.
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(y - x)(y + x) = -1
(y x)(y +x) = -10
(y -x)(y +x) = - 40

The technique can be used to build families of curves for which new

conjectures and problems can be formed. For example, if the component curves are

two overlapping ellipses, then the entire family of curves may be bounded. It is

illustrative, but not necessary, to examine inequalities rather than equations. Let

the product be

-4

-3

4

x4 + x2y2 - 8x2 + y4 - 8y
2 + 1650

If the constant term is replaced by 15 or by 17, the following graphs are found.
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x4 + x2y2 8x2 + y4 - 8y
2

+ 15.5 0

x4 + x2y2 8x2 + y4 - 8y
2

+ 17 5.0

As the constant term is replaced by numbers lower than 15 the region in the
center gets smaller and the shape approaches a square with the corners rounded.
When will the center region reduce to a point? Why?

As the constant term is replaced by numbers larger than 17 the four small
regions get smaller. When will they reduce to four points? What are the points?
Why?
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Consider an extension. Which of the two approaches, from Scenario 1 or
from Scenario 2, might be extended most easily to find h(x) = f(x).g(x) such that
f(x) and g(x) are each doubly (i.e., at two points) tangent to h(x)?

A graph:

Finally, turn the page for one more problem . . .
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What is the equation for the following graph?

Does this help?
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An Investigation using Parametric Equations

James W. Wilsoh

PROBLEM:

Find the locus of the third vertex of an equilateral triangle when two of its
vertices are moved along the x-axis and y-axis respectively.

INVESTIGATION:

Try this first by cutting out a triangle and physically rotating it along the axes,
marking the locus of the third vertex. Can this physical movement be animated on
the computer?

Repeat with other triangles scalene, isosceles, obtuse, acute, right .. .

Note that a scalene triangle could generate 6 different loci, depending on
which vertices are along the axes and the orientation of the triangle. How are the
six related?

Special case: The locus of the 90 degree angle in a right triangle when the
vertices of the acute angles are on the axes.

Can you prove the locus is an ellipse (or a degenerate ellipse)?

Consider the "special case" of a triangle with zero height. In other words,
v ',1at is the locus of a point on a fixed line segment as the segment is rotated with its
ends on the x and y axes? (Simplest cases: the loci of the end points. Next
simplest case the midpoint)

OBSERVATION:

A mechanical device that physically rotates in this way is cutter for oval
openings in picture matting There is also an adult toy, sometimes called "the
vacuum grinder," that uses the same principle. I have one on my desk.
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ANALYSIS:

Let the base of the triangle be positioned with vertices at (0,0) and (1,0) for the
initial position of the triangle. Let the third vertex be at (a,h). Therefore, the
altitude of the triangle is h and the projection of the vertex onto the x-axis is a.

As the triangle rotates, let t be the angle the base makes with the x-axis. Then
parametric equations for x(t) and y(t) are: (proof left as an exercise for the reader!)

x(t) = a cos(t) + h sin(t)
y(t) = (1-a) sin(t) + h cos(t)



For the case of the equilateral triangle, we have a = 1 /2 and h = sqr(3)/ 2. The

graph is

Y

(o,o)

x(t) = (1/2)cos(t) + (sqr(3)/2)sin(t)
y(t) = (112)sin(t) 4' (sqr(3)/2)cos(t)

Please continue the INVESTIGATION using a function grapher.

What if a = 3/ 4, h = 2?
a= 5/4, h = 1?
a =-1/4, h =1?
a=1/2, h=1/2?

What if the vertices for the base of the triangle rotated along two lines

intersecting at a 60° angle?

Note: The above vaph was generated using Mathematics Teacher Workstation from Sterling Swift

Software, Austin, Texas, The author is Ray Carry,
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Discussion

Nohda:

Becker:

Becker:

Wilson:

Becker:

Wilson:

Becker:

of Professor Wilson's Paper:

Thank you very much, Professor Wilson. You have given a lot of demonstrations.

However, we now have very little time remaining for discussion, so please ask your

questions and give comments. Professor Becker.

Jim, how difficult would it be for you to bring:4 the rectangle problem again, where

you had the three triangles with equal areas?

Thank you. Now, I think that's a very nice demonstration. I think it could be used

in the elementary school curriculum or in inservice teacher education; what was the

situation in which you use or have used the software?

This was a class of approximately forty pre-service elementary teachers. They are

probably mostly sophomores. They would have had only one other university level

math course. Many of them had had more, but they were required to have only one

other university level math course and that would have been the course on

development of number systems. So this was for many of them this course was their

first exposure to geometry since high school. This problem I brought in after we had

been doing some things with geoboards and after we had been talking about area and,

in fact, after we had looked at the proposition that area of a triangle is altitude ti n les

base times 112 and as the vertex of the triangle is moved, the area stays the same. We

had not looked at it on the screen. This is the first context in which we looked at it on

the screen.

So what they're seeing is that the base and the height are invariant.

That's right. That's what I would hope they see.

One of the interests I have in further U.S.-Japan collaboration is looking at software

like this and then determining exactly how it would best be used in the elementary

school curriculum; that is, how does it fit in with the content that is taught? I have

two other comments. The student can think about this problem you've demonstrated

in several different ways which I think is quite nice. Finally, would we regard the

movement of the three triangles to show that they occupy half the area of the rectangle

as a proof?
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Sawada: First of all, the attitude towards problem solving is very inspiring and encouraging.

Now, coming back to the software demonstration, when you introduce this in high

school geometry, how can you use it, because in many cases the teachers feel that

they must be able to prove whatever propositions 6iat arise from the students and this

may be hard for the teachers. So they may have this fear and it may be difficult to use

the software.

Wilson: There are several things in that statement. First of all, I'm using a generic kind of

general piece of software, the Geometer's Sketchpad. As the teacher I have a lotof

input into putting together this kind of exercise, so it is mine. But the Sketchpad is a

tool. It is not specifically a piece of software that does this. It's a general software.

Second, the comment about proof certainly I want demonstration and I want proof.

I think this kind of exploration always cries out for following up. If we come to a

problem that I cannot do the proof on, that doesn't mean it doesn't get put before the

class. And I want my teachers to have the comfort with saying to them "I don't know

how to prove either. Let's work on it." I think we have to get beyond that point of

saying if I don't know the answer then we can't use it in class.

Damarin: Jim, it seems to me that you were speaking about demonstrations. This is teacher-led

problem solving, is that primarily what you were saying?

Wilson: Well, certainly teacher presentation, but I think I always have things that I want

students to do that follows up on it.

Damarin: Then my question, really following on that, is what resources do students get with

this so that they can perhaps review a lesson at home or that kind of thing?

Wilson: For this particular problem, we had a Macintosh lab available to us and one of my

graduate students was available if they wanted someone to talk to about it, plus I had

handout materials that went with it. Now many of the things that we do explorations

with, like Theorist, explorations with other software over at the high school, we will

have some sort of guidelines or materials for students to look for. And we tailor that

to the particular lesson and to the particular problem, but there's usually some sort of

materials or handout that is available and the software is on the computers in the

laboratory.
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Nohda: Well, I think there is no time left. Thank you very much.

End of Discussion
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MATHEMATICS EDUCATION IN A HIGH-TECHNOLOGICAL

INFORMATION-ORIENTED SOCIETY--WHAT SHOULD IT BE?

A summary of the Report by The Executive Committee of JSME in 1987

and some comments by the chairman

Tsuneo Uetake

Asia University

Tokyo, Japan

0. Introduction
School mathematics should be re-examined from the standpoint of "What is the

mathematical literacy that the average citizen must have in a high technological, information-

oriented society?" I will consider about three important themes (1) - (3):

(1) What sort of ability must be kept in the face of a changing society?

(2) What sort of ability must be developed for a high-technological information

oriented society?

(3) How far should the average citizen study the contents of black-boxes, which

are increasing with the development of computer and means of communication?

1. Jehavioral objectives in mathematical education

I will classify the behavioral objectives in mathematical education into four "ability" levels

ranging from the least difficult to the most difficult, according to rEA ( International Association

for the Evaluation of Educational Achievement ):

COMPUTATION: Execution by routine procedure

COMPREHENSION: Execution upon the understanding of meaning or/and principle.

APPLICATION: Problem-solving by routine procedure using suitable knowledge or

operation.

ANALYSIS: Solving problems that cannot always be solved through routine

procedure.
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1-1 Many of the objectives at the "computation" level will become meaningless with the

development of the computer, because the computer is far superior to human beings in the

speed, the exactness and the capacity at which it executes these objectives. So, it is

desirable to select carefully fundamental objectives among them and raise them to the

"comprehension" level.

1-2 At the "computation" level, th following objectives should be retained:

Mental addition, subtraction, multiplication between 1-digit numbers

Addition, subtraction, multiplication between 2-digit integers on paper.

Drawing of basic figures on paper with simple tools.

1-3 At the "comprehension" level, it is important that the ability to "visualize" be retained:

Connect an object of study to some figure or scheme corresponding to it.

Examples: A rectangle in multiplication of rationale;

A number line in addition or subtraction between signed numbers.

1-4 From a standpoint of humanistic education, it is important not only to the intellectual side of

mathematical literacy, but also to the affective side of it.

2. About the "Black-box"

2-1 If we re-examine our objectives from the standpoint of the learning about black-box, there

are various approaches, and these will be useful for mathematical education in a new

society.

2-2 The algorithms in the Black-box can easily be understood if they contain only simple

computation : it will be helpful as a basis for information science, and using the computer

will be effective for the learning.

Some examples of "transparent" box in traditional school mathematics:

Linear, quadratic, and rational functions,

Operations of numbers, vectors, matrices and formulas,

Linear transformations,

Examples of the black-box in traditional school mathematics:

Square root and trigonometric, exponential and logarithmic functions (as tables of

these functions)

2-3 Almost all operations (computations) that are done with "paper & pencil" in traditional

mathematics are entering into black-boxes as computer software. So, for "complicated

computations", we must positively use the computer as a tool in the form of black-box

instead of these computations. It is necessary to develop the black-box (software) suitable

for a tool in mathematics education.
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Examples: Electronic spreadsheets (see Appendix)

Formula manipulation systems

Computer graphic systems

2-4 When we use a black-box, it is indispensable to learn about its meaning.

The traditional behavioral objectives at the computation level may be re-evaluated as a

behavioric experience for the understanding of its meaning. However, we should limit

such experience to the elementary and/or typical level. Therefore, it is not necessary to

become proficient in these manipulations.

2-5 In using a black-box as a tool, it will become important to achieve the ability to understand

the meaning of the input or output of it, in order to achieve one aspect of mathematical

literacy.

3. Problem solving and logical thinking

3-1 I think that traditional Japanese mathematical education has mostly come to halt at the

"Application" level. It is now desirable to raise it to the "Analysis" level.

3-2 In order to develop problem-solving ability, it is desirable to prepare as many good

problems as possible that are suitable for each school level and that are mathematically

meaningful. Problems of this kind have already been developed both in Japan and in

foreign countries, but hereafter we should give priority to accumulating typical problems

suitable for use with the computer as a tool.

3-3 In a high-technological information society, it is important to develop students' ability to

solve problems and think logically, but these educational objectives at a high level are too

difficult for most students.

3-4 Some people say that computer programming is effective for developing the ability to

think logically; however, this hypothesis does not yet have sufficient conclusive evidence

to support it.

3-5 The reasoning in Euclidian geometry is deeply connected to mathematical intuition through

the figure, so it is very dangerous if students lose the chance to come into contact with it.

4. Use of the computer

4-1 By using the computer as a tool, it may be possible for us to deal with teaching in a more

liberal way, apart from the traditional framework.

[I am referring to the situation as it exists in Japan] So, it is desirable to accumulate typical

problems of this kind.
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4-2 If there comes an age in Japan when we can freely use computers inside and outside the

schools, a prescribed program of school mathematics may become meaningless.

4-3 For the time being, the important theme in using computers in school mathematics is how

we can use them effectively as a tool for problem solving in the general classroom.

For example: Using a large screen or digital display for demonstration

Group learning via several machines

Using notebook size computers

4-4 Almost all CAI ( Computer Assisted Instruction ), stand-alone or network, as individual

learning, is used for "drill and practice".

4-5 At the present time, almost all authoring systems are unsatisfactory for mathematics

education. For effective use of these systems, it is necessary to accumulate the classroom

experiences mentioned in 43.

4-6 CMI ( Computer Managed Instruction ) for educational information should be used as a

technique for educational research rather than a way to save time.

4-7 Education for computer literacy should not only be included in the teaching of

programming languages but also be made a part of the attitude and ability that recognize the

computer as a tool and which encourage the appropriate use of that tool in every field.

Mathematics education can share in such education.
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Appendix 1

NEW CURRICULUM (FROM 1994) FOR UPPER SECONDARY SCHOOLS IN JAPAN

(Mainstream)

**MATHEMATICS I(4)

Quadratic functions

Trigonometric ratios

Enumeration

Probability

*MATHEMATICS II(3)

Various functions

Figures and equations

Introduction to analysis

*MATHEMATICS III(3)

Function and their limits

Differentiation

Integration

(Side options)

*MATHEMATICS A (2/4)

Numbers and formulas

Plane geometry

Number sequences

Computation and Computer

*MATHEMATICS

Vectors

Complex numbers and Gauss plane

Probability distributions

Algorithms and computers

*M. °,THEMATICS C (2/4)

Matrices and linear computations

Various Curves

Numerical computation

Statistical Processing

Note: ** Required subjects; * Optional subjects; ( ) Number of credits

4 n 3
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Appendix 2

TEACHING OF LINEAR ALGEBRA USING AN ELECTRONIC SPREADSHEET

1. Introduction

All the content in the "Mathematics B" are learned using the computer as a tool in the fort

of black-box. This paper shows how "Multiplan" can be used in the teaching of the content of

"Matrices and linear computations" in this subject.

Matrices and linear computations

(a) Matrices

a. Matrices and their operations

addition, subtraction, multiplication by a real number

b. Product of matrices and inverse of 2x2 matrices

(b) Simultaneous linear equations

a. Representation by a matrix

b. Solving by sweep-out method

2. Matrices and their operations

At the definition of matrix, we can use the row and column on Multiplan, and

"programming" for addition, subtraction, multiplication by a real number are very easy if students

use the relative representation of variables and the "copy" function on spreadsheet. For the

following example, all elements of A + B, A B are RC[-8]+RC[-4], RC[-12]RC[-8],

respee..,tively,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 A B A+B AB
2 2 1 2 1 1 3 X X X X X X

3 3 2 4 0 1 2 X X X X X X

4 5 4 3 3 2 1 X X X X X X
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3. Product of matrices
If 2 matrices A, B are given the following, (1,1),(1,2) elements of A B are

1 2 3 4 5 6 Rq-3]*R[--3]C+RC[-2] *R[-2]C+RC[-1] *R[-l]C

1

B

1 3

RC[- 4]*R[-3]C+Rg-3]*12[-3]C+RC[-2]*R[-1]C,

respectively.

0 1 2 These formulas will be able to "write" easily

A 3 2 1 by the moving of the cursor on spreadsheet.

2 1 2 X X X

3 2 4 X X X

5 4 3 X X X

4. Simultaneous linear equations

a. Representation by a matrix

A matrix

al bi ci dl

a2 "LIB 02 d2

a3 b3 c3 d 3

represents the next simultaneous linear equation

al xi + bi X2 + CI X3 = di

a2 xi + b2 x2 + C2 X3 = d2

a3 xi + b3 x2 + c3 x3 = d3

b. Solving by sweep-out method

This "program" can use the"copy" function on all rows. I will show an example

of the"sweep-out program" on Multiplan to solve the above equation.
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"14,U74./YVA"
2 I

1...s2 -3
1 -2 1

RC-43C/R2C1 R(-4)C/R2C1 R(-4)C/R2C1
R(-4)C-RC-S)C.R3C1/ RC-47C-HC-5)CR3C1/ R(-4)C-RC-57CR3C1/
R2C1 R2CI R2C1
R(-4)C-R(-6)C .R4C1/ RC-47C-RC-6)CR4C1/ R[-4)C-RC-6)C-R4C1/
R2C1 R2C1 R2C1

R(-4X-R[-3)C*R6C2/ R[-4)C-R[-33C*R6C2/ R[-4)C-R[-3)C*R6C2/
R7C2 R7C2 R7C2
R(-43C/R7C2 R[-4)C/R7C2 R[-4)C/R7C2
R(-4)C-R[-SX*R8C2/ R[-4)C-R[-S)C018C2/ R[-4)C-RE-S)C*R8C2/
R7C2 R7C2 R7C2

R[-4]C-R(-2)C*RIOC3 R[-4)C-K-2JC*RIOC3 K-4)C-R[-23C*R10C3
/R12C3 /R12C3 /R12C3
RE-4)C-RC-3)C*R11C3 R[-4)C-R[-3)C*R1IC3 R[-47C-RE-3)C*RIIC3
/R12C3 /R12C3 /R12C3
R[-4)C/R12C3 R[-4)C/RI2C3 R[-4)C/R12C3
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RC-4)C/R2C1
RC-41C-RC-53C.R3C1/
R2C1
R(-4)C-11C-6)C .R4C1/
R2C1

11(-4)C-R[-3)C*R6C2/
R7C2
11(-4)C/R7C2
R(-4)C-RE-S)C*R8C2/
R7C2

R[-4)C-R[-2)C.PRI0C3
/R12C3
R(-4)C-RC-3)C*R11C3
/R12C3
R[-4)C/R12C3



Appendix 3

CONTENTS OF DISCRETE MATHEMATICS AS THE BASIS OF INFORMATION SCIENCE

(From the proposal of the report by the executive committee of JSME)

*Enumeration, *Positional notations (Binary & Hexadecimal numbers), *The idea of Algorithm

(esp. Recursive programs), Number theory, Graph theory.

*is adopted partially into the new Japanese curriculum.
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Discussion

Teague:

Becker:

Uetake:

Choate:

Uetake:

Choate:

Uetake:

of Professor Uetake's paper:

Thank you, Professor Uetake, for a very interesting and inspiring talk. The floor is

now open for questions/comments. Professor Becker.

Thank you. On page 4 of Professor Uetake's paper in paragraph 3.4, he says "Some

people say that computer programming is effective for developing the ability to think

logically. However, this hypothesis does not yet have sufficient conclusive evidence

to support it." I'm wondering about the extent to which in Japanese schools, now or

in the near future, students actually write programs for the computer to solve

particular problems. How widespread is this, and is it considered important?

In Japanese high schools, mainly the BASIC programming language is introduced.

While the meaning of what logical thinking is not clear and is a problem, it depends

on how you interpret it. But, in this case the logical thinking is the meaning given to

logical thinking in item 3.5.

I have a question about 3.5. You say the reasoning in Euclidean geometry is deeply

connected to mathematical intuition through the figure. Could you explain to me what

you mean by "through the figure?"

Well, I feel that there seems to be a difference in determining what "proof' and

"reasoning" mean. In Japan, unless a student can actually write down the whole

proof, we cannot say that the student has got the reasoning for it. So we mean that

the student must have the reasoning up to the level that you really are able to write

down the whole proof, supported by geometrical intuition.

Following up on that, in America we seem to be obsessed with proof in geometry to

the stage where students have to write proofs that contain all axioms and all reasons

have to be very carefully presented. Is this what is done in the Japanese schools?

Well, in Japan too, when it comes to proof you have to write down everything. But I

feel that after looking at and observing all the demonstrations so far, what is given

seems like reasoning used only as just introductory to proving something. It's not

the final stage.
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Ferrio: Professor Uetake, in the United States for some time now we have had a lot of

training in computer programming in traditional languages like BASIC and Pascal;

but now with new software programs like we've seen this morning, like Excel, tools

like that that are very powerful and have script capabilities and things like that I

think my opinion is that the emphasis in the United States is changing to teaching

students how to use those powerful tools which have the programming built in and

there's less emphasis on the traditional, formal programming languages that computer

scientists use. I have two questions related to that. One is what is your opinion on

that? Number two is about the new Japanese curriculum, will it continue to

emphasize traditional programming or will it be adaptable to some of these new tools?

Uetake: First of all, when the computer was originally introduced, most of the time the

BASIC language was attached to it. And that's why we started using BASIC because

buying new software is expensive. But certainly the more the software is available,

well, I think we should maybe go in that direction. And for the second question

about curriculum, in Math A and Math B in item 4, emphasis is placed on

programming itself, whereas in Math C the use of commercial software is

encouraged.

Dugdale: On page 5 item 4.6, you mention the use of computer-managed instruction as a

technique for educational research. Could you say more about your ideas of how that

would work, of how you would use computer-managed instruction for research?

Uetake: What we call the response analyzer, the CMI software, it is available and the teachers

are using it. And they get all the data of the students' responses and then they analyze

the students' activities. They are using this to save time. I am saying that that is not

a good way of using CMI.

Kaida: I have a question on page 4, #4.2. It mentions that prescribed programs of school

mathematics may become meaningless, and I'm wondering what does that mean...the

prescribed program?

Uetake: The program doesn't mean the computer program. It means the curriculum.

Kaida: So it means the mathematics curriculum itself. I have a follow-up question then. I

think for many of our students in the United States, at least in our school, I think we

.399 414



could say that they do have free use of computers at home and at school, for a

majority of them, and yet we have a prescribed program that we still follow. So how

do you view that that would be different in Japan from the United States?

Uetake: In Japan it may be worse and if this situation continues, then it would be really bad.

So something should be changed in the future. That's the reason I wrote this paper.

Of course, there are a lot of very active teachers who are trying to introduce a new

way of teaching and some of them have been introduced here.

Fey: I think this point highlights a difference that's been running throughout the

presentations of the conference and it's a difference between Jim Wilson's talk this

morning and some of the other, some of the typical curriculum talk in our country. It

seems to me that what Jim meant by solving problems or problem solving was

exploring mathematically rich situations and finding interesting ideas there. And what

is sometimes meant by problem solving is more at the application level in your

discussion, taking a technique that you know, a mathematical technique, and applying

it to a particular well defined problem. I sense that what is made possible by the

technology is to give students access to much more of the exploratory style of

learning because there isn't the hieral by of prerequisite mathematical skills that have

to be mastered before you can investigate the situations. In that sense, what

Professor Uetake is talking about is made possible by the technology, but it raises a

very fundamental question for us in thinking about what is the curriculum? What are

our goals in the curriculum? Is it a well defined set of specific content objectives? Or

is it an environment in which students explore and develop abilities that are much less

sharply defined and limited?

Uetake: In the curriculum given by the Ministry of Education, the general objectives for math

education are stated. And they include both application and the idea of creativity. But

whether those goals are achieved or not is a different question. The problem is that,

in Japan, math education is greatly influenced by the entrance examinations, as

you've heard. Recently an article was printed in the Shukan Asashi, a weekly

magazine, July 5, 1991, and it asked whether math is memorization or a creation of

mind. And a response was given by Peter Frankl who is an International

Mathematics Olympiad winner. He and others were given the math problems and he

presented a very unique way of solving a problem. And so, I think it is of great

interest. But at the same time, for about ten years now, a book calle,c1Mathematics Is
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J. Wilson:

Memorization is being sold and is very popular; so, there is a problem.

I know many of our Japanese colleagues are members of NCTM and if the election

had gone the other way I'd be campaigning about the ,S& and presenting those;

but I would say that much of the spirit of what I see this curriculum under

construction with these teachers and studentsconstructing their mathematics and

following up on interesting ideas is underlying (undermining?) the philosophy that's

in the atandarsia. Now, there is no question that what goes on in our schools is not

described in the Standards. What is intended there is that that should be out, and

what we should work towards over the nextdecade or rAore. And I would hope that

you examine the Standards for Curriculum and Evaluation and the Standards For

Teaching and comment to us in the United States about those and see how over time

those things play out both here and in your way of thinking too.

Uetake: Most Japanese scholars, mathematics educators and mathematicians are very studious

and I'm sure they have already read NCTM's Standards.

Wilson: I wish I could say the same for the U.S.

Uetake: But, I am specifying only the researchers and scholars. I don't know anything about

the math teacher in the classroom, in this respect.

Miwa: Probably we will discuss the curriculum this afternoon, but in Japan the standard

curriculum is set by the Ministry of Education which includes the goals and

objectives, as Professor Uetake has said, so certainly we have definite objec 'ves and

specify the content. Every teacher must follow and cover all those objectives. where

is no choice of selection. But as the useof computers gets more and more popular in

the near future, this system may have to change. Also, in a way the emphasis on

individualization is getting more and more popular and so this trend will go farther.

The problem is that everything is based on Japanese culture which is not very liberal;

so this movement may be quite slow, unfortunately. But, especially, in the math field

it may be less likely: Another problem is that the curriculum is revised only every ten

years, and certainly the curriculum should be revised more frequently in the future.

This is the big problem in Japan right now.

Sawada: Probably you have noticed tha;. in Japan, math educators are mainly concerned with
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and working on the elementary and lower secondary school levels in mathematics.

And we are succeeding in this area, whereas, it seems that in the States the main

emphasis is on high school math education. In Japan, at the high school level, the

main emphasis is still on acquiring information, in other words, memorization. This

is due to the great influence of the entrance examinations. This should be changed

and in Japan, also, we should have more emphasis on high school math too.

Damarin: Along these lines, I don't understand fully your high school curriculum, in particular,

what is the relationship of mathematics II, mathematics DI, and mathematics A, B,

and C? Are there differences among the students who choose those different optional

courses that you think about as you design the curriculum? And third, I guess as a

follow up, how is that related to the differences in the role of the computer in those

various curricula? It's sort of a big question, but can you respond?

Uetake: For one thing, by giving some options, the main purpose is to provide a variety of

courses for students. Math I, II, III are the main courses and, especially, Math I is

compulsory - everybody has to take it. Math II and III are for math and science

majors. However, Math A, B, C are electives. Each course contains four items and

a student can choose two out of four. That way they have a lot more options. The

problem now is that when students take the college and university entrance

examinations, they are at a loss of what to do. That's one of the reasons this system

was developed; we want to stimulate the colleges and universities to do something

about the entrance examinations. The Ministry of Education just very recently and

suddenly announced that from next year on, every university and college can make

their own curriculum; this is free and total liberation. This certainly is confusing to

colleges as well as to the math teachers, and so when I go back to Japan I will work

on that. But I have some anxiety because if this happens, then the college of liberal

arts may disappear and I am fearful of that. So, you see, we have to really work hard

on the new curriculum.

Teague: We are approaching our luncheon time, so I think it's time to bring this to a close.

Thank you again, Professor Uetake, for a very stimulating presentation.

End of Discussion
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SUMMARY OF SEMINAR

Miwa: Now we will begin the discussion concerning an overview of our Seminar and

various other matters. We'll begin with Professor Sugiyama, who has some

comments.

Sugiyama: To begin the discussion I'd like to say that we feel that we've learned a lot by looking

at the work of our American colleagues. In addition to interesting and useful papers,

we've seen quite a bit of very interesting software. We've learned a lot about using

computer software for graphing, for example. We've seen a lot ofsoftware with a lot

of imagination built into it, particularly yesterday we saw a lot of the kind ofsoftware

that we really haven't seen much ofin Japan, and we felt that it's full of explorative

spirit. And at the very beginning of our discussion today, I'd like to thank the our

American colleagues for all they've brought to the conference.

Damarin: Speaking for myself on the American side, we've learned a lot about sameness and

differences between our two groups of mathematics educators. We've learned

something about the meaning of problem solving in the two societies, something

about curricular differences, and something about the ways in which maybe those

differences help to shape the developmentof technology for curricular use. It seems

that there are some major differences between the two societies in the constraints

imposed by the curriculum, and maybe the conception of problem solving placed on

the kind of software that we've developed to date and the ways that we think about

implementing technology within our separate boundary conditions. To me those are

really interesting areas to explore further. I'd be particularly interested in knowing

more about how Japanese teachers take technology and use it within a more

constrained kind of curriculum than we have, a more line-by-line spelled out

curriculum than we tend to have. I was very interested in the papers of Professor

Sawada and Professor Kumagai. We have in our country a lot of questionnaire

studies of teachers and we've never, to my knowledge, asked teachers in all of those

studies whether they talk to each other about technology. And I think we have a lot to

learn from the ways you address teacher training, that Professor Hashimoto talked

about, and I would be very interested in learning more about those. There's a whole

lot to learn from each other and I appreciate being here very much.

Becker: Jon, are you interested in making some comments, since I know you have to leave
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for the airport shortly?

Choate: I leave here very humbled. I leave with far more questions than I arrived with. I'm

intrigued by how technology could be so dependent on culture. I never really thought

about it before. To be honest I go back challenging a lot of assumptions I've made

about how people learn because I guess I never really asked the important question,

which was what's global learning. Maybe that's a comment on my background. I

leave very impressed with how our Japanese colleagues have taken technology and

been able to shape it to their curriculum. I think we have a lot to learn from them. I

wish I could take back with me some of your software and show it to some of my

colleagues, particularly to those who think they have a lot of answers because I don't

think they have the answers. Personally, I'm intrigued with the whole question of

visualization and I've found many of the Japanese ideas about this intriguing. I can't

help but believe that we're in an age where we learn with our eyes and I'm not sure

we really know what that means. One final comment is I'm intrigued that I don't

think that our Japanese colleagues have really started to address the whole question of

what mathematics the technology brings with it. I wonder what happens in a system

where the time delay is ten years because the most recent statistic that I heard is the

amount of mathematical knowledge doubles every ten years. I find it interesting that

there's no real mention of discrete mathematics and, in our curriculum, we have

discrete mathematics now because that is the mathematics that came about when

America really industrialized. In other words, it's the mathematics that our society

has used to solve many logistics problems, many problems that are of the modern

age. I always thought it necessary that we taught this to our children. I'm not so

sure now, but I still think there may be something there. And the final thing I'd like

to say and I ask my colleagues here this question, I wonder how many people have

read the book called In the Age of the Smart Machine -she Future of Work and

Power? It is written by a professor at the Harvard Business School and it is a study

of what will the workers need to know in the year 2000. And what she comes up

with is a picture of a worker sitting in front of a t.v. screen manipulating some

images. Her concern is that the workers not treat the images as a black box, but that

they be able to understand the image as being pictures of a dynamic process that they

understand. I leave here still convinced this is what we need to know. I leave here

realizing that perhaps there's a far different answer to it than I thought. I would like

to thank all members of the Japanese delegation for a memorable learning experience.
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Becker:

Hashimoto:

Sugiyama:

Demana:

The name of the book is La The Age of Smart Machines.

As one member of the Japanese delegation I'd like to echo what Professor Sugiyama

has said and thank everyone and mention further thatwe've learned quite a lot. In

particular, there are two points that I think came up and should be emphasized. One

thing is that in the classroom, when introducing computers and software, the teacher

needs to have a spirit of fun and play when doing it. I think perhaps Professor

Wilson's demonstration this morning would be a good example of that. Also, with

respect to graphical software we've seen, what do we mean by graphical and isn't it

possible that the emphasis on graphics will make it possible to create new school

math; however, this may cause problems for the teachers, at least in the short run, but

I'd like to think about the possibilities that this has brought.

Earlier I expressed my appreciation. This time I have a question. In regard to the

introduction to the computer use, it seems like the graphics part is very often used.

For example, in Japan with respect to degree 3 or degree 4 or higher degree

polynomials, functions won't be introduced until differential or integral calculus is

introduced and, therefore, those graphs are not really introduced because it is very

hard to write them manually. It's very complicated. However, it seems that in the

States you're using computers a lot and instead of the student drawing graph you let

the computer do the work. Now, certainly even in Japan we should be able to

introduce this kind of graphics at lower grade levels too. I understand from

Professor Fey's demonstration that joined graphs are introduced in the class, but my

question is, is this used in general? Is it very popular to do so using computers to

draw graphs?

I think it's very popular and growing now in our country to utilize the technology to

build understanding about graphs. In fact, one of the strong suits we see in this use

is that students come away with a complete understanding, well almost complete,

complete but still at a naive level of understanding of classes of functions. This is the

first time in my life I've seen students prior to the study of calculus truly come to

grips with what rational functions are. And even before in our country, at least in

calculus, we did not see that kind of understanding. And it is growing because it

allows more complicated problems for us because the models can be more realistic

now that they understand wider classes of functions that can be used as models of

problems. I mean we've been able to look at some of the neat applications of conics -
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such things as kidney stone crushers which are in parabolic curves and things of that

type which now come alive with technology that were not possible before.

Fey: It seems to me that there are two central questions that have come up. One issue is

the continuing question of whether mathematics is a product, a body of knowledge

that has accumulated over a long period of time and is to be transmitted to students,

ora way of thinking, a process? How has technology caused us to re-think our

position on this issue? The second issue is the evolving roles of teachers and the

student in this new arena. One thing that has struck me about using technology in my

own classes is that when I take a computer into the classroom I think the rules of the

classroom change. I have come to feel that in traditional mathematics instruction

many students feel that mathematics is a secret game which those of us in the

fraternity know how to play. They see mathematics education as a contest: It's the

students' task to uncover the rules of the game that they're playing against the

teacher. But when I bring technology into the classroom, the contest changes. The

teacher and the students are now working together to figure out the way the world

works. What happens in the classroom is that the relationship between teachers and

students changes as the activity changes.

Becker: I feel that the Seminar has been a very valuable experience for all of us and in one

way or another has changed each of us, judging by comments made to me by both

Japanese and U.S. participants. And I think that what we had hoped for is turning

out to be true; namely, that we met here in July of 1986 and were concerned with

educational matters, in particular problem solving in mathematics in all its aspects.

Following that we organized and carried out cross-national research and other

collaborative activities which has now led in a very natural way to this Seminar. I

think these things have moved along in a very nice way. We have mathematics

educators in our two countries communicating and collaborating with each other

which I think is very healthy and useful. Also, I think we have seen some

magnificent creations of software here at this Seminar, highly sophisticated software.

Further, we have seen software that is very close to the classroom - to the

curriculum, to the teacher teaching the content of the curriculum, and to the students.

For me, I feel even more sensitive than before to the need to carefully ferret out the

implications of some of the more sophisticated software for use by teachers and

students in the classroom. And as others have commented, that involves a very large

consideration of teacher education. Now with Professor Miwa's concurrence, I think
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we should change the direction of our discussion towards the Emcsadinga.

Publication of the Proceeding

Miwa: So, as we have seen, there are many opinions concerning the Seminar deliberations,

but now we'll switch to a discussion of the Proceedings of the Seminar.

Becker: We've had no formal discussion of whether a Proceedings should be published or

not There has been discussion during the week that if we decided we would like to

do this, then we need to consider what all is involved in that. Since all papers are in

English, if we publish the proceedings it would be in English and, therefore,

probably most of the work of putting the Proceedings together would rest with the

U.S. side. It would involve editing papers and, of course, each of us re-working our

papers following the Seminar in ways that we think appropriate. We would also have

to look at the different possibilities in terms of getting the proceedings printed and

whether we might explore, for example, having the National Council of Teachers of

Mathematics publish the Proceedings, or possibly contact a commercial publisher.

Or, we might consider proceeding as we did in 1986 and print the Proceedings and

fairly quickly disseminate them directly to members of the U.S. math education

community and also in Japan. The Japanese have indicated that they would not

translate all of this into Japanese, but they would be interested in having a substantial

number of copies, to be specified later, of the Proceedings for dissemination in

Japan. So, are there some of you that have some sentiments you would like to

express about these matters?

J. Wilson: I would like to see the Proceedings published, but in a format and in a way which is

expedient, to get things out soon rather than the kind of long-term development that

might be required with, say, a publisher or with NCTM. So, I would urge that we

consider something maybe similar to what we did last time where the goal would be

getting it done in an expeditious manner rather than something that if we go through

NCTM, for example, we would be talking about two years from now before it would

be out.

Becker: Are there other views on the question? The way in which we proceeded before was

that Professor Miwa and I collected all the papers, did some light editing of them, had

them all typed up on a word processor, proofed and then they were printed at
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Southern Illinois University's Duplicating and Printing division. It was done very

quickly and then we simply mailed them out from SIUC. We were fortunate at that

time to have just barely sufficient resources to send copies to a fairly large number of

people in the U.S., and the Japanese helped with resources in disseminating them

also.

Demana: I agree with doing this in an expeditious way and we could practice our technological

skills and try to take the electronic copies we have and avoid even massive retyping.

It would be an interesting scenario to try to pull all of this together electronically.

Becker: Sharon, would you like to make some comments?

Dugdale: I was just thinking that getting it together electronically would be a good idea. But I

don't know that making it available on a disk would make sense, given the

incompatibility of people's hardware and word processing systems and the non-

transportability of some graphic images. So I would suggest that everyone who has

an electronic copy should submit it in the most compatible form they can, and that the

Proceedings then be compiled as a printed document, rather than a disk.

Teague: I agree with Sharon. I think the problems of having a disk and not knowing how to

bring out whatever's on it would be really troublesome.

Wilson: I don't play down the hardware problems and compatibility, but I think the use of a

disk has a human side to it - in our geometry and measurement project, we distributed

about 800 copies on disk. And we haven't found people who would take the trouble

to print them out, and they get very little use; whereas if a hard copy is in hand, they

will look at it and make use of some of it. You know that's not a problem having the

hardware to do it, the Macintosh is sitting there. In our case, we had (Joe, was it 600.

700 pages?) of stuff or something like that? And our production process was on a

disk, so then the final copy came from that. So we could make available the disk or

the hard copy. It was $3 to do a disk and $25 to do a big notebook, so it was an

economic thing.

Becker: Are we talking about two different things? I thought we were talking about the

papers being submitted to form the Proceedings.
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Dugdale: No, there was a suggestion for an electronic distribution of the Proceedings.

Becker: Okay. What did we decide about the first one? Getting the papers to me to form the

volume?

H. Wilson: They can be on electronic form. Whoever gets it has to find a way of getting it off or

retyping or whatever? I'm sure you have both MS DOS and Macintosh frames at

your place if you're the one that's doing it.

Becker: If I'm the one that's doing it, Macintosh software would be preferred. The woman

who would be working on it works very effectively on the Mac.

H. Wilson: With the exception of some problems with graphics, the Macintosh would do. For

instance, if it's Word Perfect, it can be carried over with no trouble, with some

problems with the graphics.

? Haig But the Japanese computers are completely incompatible with both.

Becker: So perhaps we're speaking only about the U.S. group. From the Japanese, we

would like to have the papers and then we would re-type them. Professor Uetake?

Uetake: Sending from Japan, probably the fastest means available now is by fax. However,

if sent by fax the question is who is going to pick up the phone bill?

Becker: The person who sends it?

Miwa: And what about the cost for printing?

Becker. Okay. The question is the cost. Mr. Sawada?

Sawada: As far as submission on a Macintosh disk, it's probably not all that difficult since

more and more Japanese universities are getting Macintoshes. We could put them in

and send the disk. The problem is what to do about the software, not the document

itself, but the software?

Becker: Yes, are there comments on this, Sharon?
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Dugdale: Even if the Japanese machines are not IBM or Macintosh, couldn't they send a

generic text file?

J. Wilson: If they have a Macintosh, they could put the stuff on the Macintosh.

Nohda: Proofing the printing itself is no problem. Well, my concern is whether this is just a

collection of the presentations or whether the content for the Proceedings should be

more selective and not everything included.

Hashimoto: Since the discussions and various comments are the result of this Seminar, we should

include these too - the contents of discussions as well.

Sugiyama: The problem here is not the content of the Proceedings, because the Proceedings

should include all the presentations and preferably the contents of the discussion as

well. Now the problem is how we should proceed to prepare the material from the

Japanese side.

Becker: It's about time for us to have a break. We'll take a break and when we come back we

can finish this matter. We need to take a break now for a different reason also; Jim

McMahon will be back in a short while and we want to have him and all of his staff in

here to thank them for all that they've done for us, before Jim leaves again. So, we'll

have a break and then reconvene to take care of that, draw all this together, and then

discuss further collaboration.

Short Break

Becker: We may have to prepare some visuals to give some meaning to the discussions, but

we'll work on that. The question of money for printing has been asked and we don't

know about that. What we do know is that I can raise some money with NSF, a very

small amount in the present grant and maybe some supplemental funding, but

certainly not a great deal. And Professor Miwa has said that the Japanese side would

look into the possibility of generating some funds which they would use to support

the process also. We'll just have to play that by ear, for now, and hope that it works

out fine. But I think we need to set a deadline for people getting their disks and/or a

hard copy paper to us. Over the break we were talking and the Japanese side would
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be able to submit all of their papers in MacWrite. How does that sound? Is that

possible for the people on the U.S. side also?

Teague: Mine is done on the IBM and I'm not all that anxious to redo it in MacWrite.

Becker: And if that fails, just send us a hard copy and we'll type it into the word processor.

Can you transport from Word into MacWrite?

Becker: Either, it doesn't matter. Actually the question came up who to send it to. I think I

would prefer that it would be sent directly to me and we'll deal with it as best we can.

And Jim has indicated that if we need some help on that, he can provide that help.

This approach might be just a little bit more efficient in terms of time. Now, what

about the deadline for getting these disks and/or hard copy papers to me? What

would be a reasonable time to set? Do you have some suggestions?

Hashimoto: I feel that if transcriptions from the discussions are also included, that might take

considerable time and so the deadline may go along with that.

Becker. Yes. Maybe if we could set a deadline for getting the papers to me, that will be

useful. Of course, we will work as diligently as we can after I get back to my

university on getting the transcriptions done. Once those are drafted, a copy would

be sent to everyone who has spoken in the discussions. If everybody would like to

have a copy of the draft we could provide it. But everyone should see in the

transcription what they've said so that if there are any corrections necessary, those

could be made.

J. Wilson: If you don't get a response within, say, ten days, you assume they agree with it.

Becker. perhaps. Actually, this didn't turn out to be a problem last time around. I hope

it won't be this time either. Can someone suggest adate by which you have your

papers to me? I was thinking more like the end of September.

Miwa: I would suggest the end of October.

Becker: That's fine. And then Professor Miwa and I will do some minor editing. If there are
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Dugdale:

Becker:

Dugdale:

Miwa:

Becker:

H. Wilson:

any changes made, we'll send you a copy so you're aware of it and you can react to

it. Now, the question was asked earlier about software packages, or the software that

was demonstrated here, what to do about that? We wonder whether, on each side,

we could find someone to provide a description of the software that was

demonstrated and that description would be included in the Proceedings. Does that

seem satisfactory?

Yes. For the software descriptions, are there any guidelines about length, so we have

some notion of consistency?

That's a good question. Do you have a suggestion?

As far as a suggestion, I think that it could take two pages to include a couple of

screen displays and to describe the function of the software. In order to say much

more about the interesting problems people were showing it might turn into a fairly

large paper, so that's my concern - whether this should be as brief a synopsis as

possible or something else.

Well, since we don't know the how big the whole Proceedings will be, I'll suggest

Professor Becker's approach; that is, the one who demonstrated the software should

prepare the description.

It's all right with me if it's all right with everyone else.

Jerry. Just a suggestion. It might be helpful if, as early as possible, an appendix

could be built with reference numbers or something so that those in the discussion

and so forth could reference this appendix list of the software, rather than everybody

using different footnotes. I don't know if that's practical or not, but at least there

would be a common vocabulary, so to speak, on the software items. Just a

suggestion.

Becker: Thank you. Professor Miwa, should we now go to the discussion of the

collaboration?
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Plans for Post Seminar Collaboration Activities

Miwa: First, I handed out a proposed listing of topics for further study. Though these topics

came from discussions I had with the members of the Japanese delegation, it's my

own list and has many of my own opinions, so I'm sure that there will be people

from the Japanese delegation that have comments and suggestions to add to this. It

does not necessarily represent a consensus. I think these are ideas to form joint

research, but they're mostly research questions that have come from topics discussed

here in the Seminar, and things that I feel need more research. First, teacher

education. The importance of teacher education in computer use in school

mathematics has been emphasized unanimously in the Seminar. In particular, the

content of pre-service education should be studied. Second, software. Excellent

software for secondary school mathematics in the U.S. has been demonstrated in this

Seminar. Development of software effective for mathematical problem solving using

computers should be conducted. We should consider software such as open-end

problem solving and game type software. Reference has been made to calculus based

on computer use, along with intensive algebra presented by the U.S. in this Seminar.

Third, development of a curriculum based upon computer use might be conducted.

Four, problems which are appropriate for mathematical problem solving with

computer use should alsobe considered - for example, open-ended problems,

appropriate for computer use. Five, teaching using computers should be studied.

How the role of the teacher and students' interest change using the computer should

be explored. Please give other comments or raise questions.

Demana: Do you mean in two and three that you want the research to be the development, or a

survey of what's been developed?

Miwa: Focusing on actual development of software and development of curriculum rather

than a survey of what is developed.

Demana: And one other question. Do you include graphing calculators, which are pocket

computers, under computers?

Miwa: In #2 I'm focusing primarily on software, rather than hardware. I'm looking at

things that either we could develop ourselves or we could push software developers

to develop for us.
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Sugiyama: When you're thinking about curriculum and use of technology in the classroom, of

course, use of the pocket and graphing calculators ought to be within the area that we

consider, whether one is actually using them or not.

Fey: I think this is a very impressive list and they're all important problems and there will

be work in both countries on these things. What I've puzzled over is what we can do

collaboratively. It seems to me one possible strategy is to do case studies or find

"existence proofs" in these areas and share those with each other. You have a

somewhat different approach to the use of software in the classroom than we do. A

rich description of those approaches, videotapes such as the Japanese have shown

and things like that that could be shared with the other country, and would be helpful.

I don't see research projects in the same sense as the problem solving study, but I

think a sharing of the best that you're doing and the best that we're doing would be

useful.

Dugdale: Along the same line as Jim's comment, with the #4 problems and #5 teaching and

learning, I wonder if something can be done with the process of teaching. This could

be somewhat similar to the problem solving study that has already been done, except

developing the problems in a teaching and learning situation instead of posing the

problems in a test situation. This would involve identifying good problems to

develop with computers in the classroom and then perhaps videotaping to compare

how the problems are approached and how the students respond in Japanese and

U.S. classrooms. But working on the same problems as you identifies in the

previous study with the test situation also seems reasonable.

Damarin: I think the focus in two on what's the best software depends in part on what part of

the teaching/learning context is being used, so I think one thing we might work on is

clarifying the purposes to which software is being put. And I think one interesting

approach might be to take some existing software, for example, the Geometer's

Sketchpad and look at how that would be most appropriately used in the two

countries. What kinds of scripts would be created in different situations and what

kind of learning would take place due to the way in which the scripts were created.

I'd also like to note that inservice teacher training is not on this list, and it teems to

me that it's an important piece of the problem whether that's the study of training

itself or the study of how teachers come to be better computer users in each of the
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countries.

Sawada: Since the our cultures are so different, certainly our environment and the way of

teaching are also different. So, at this time of introducing the computer into

education, what we would like to, in Japan, introduce individualized teaching and

learning situations, whereas it seems like, for example, from the research results of

the LEA, the Americans are very much interested in the Japanese way of the whole-

class teaching style. If we can exchange those ideas and get the best of each side it

would be a very good idea.

J. Wilson: I was going to point out that one of the papers that was distributed to you was

something called a "Memorandum" that, in the planning activities on the U.S. side, I

agreed to send Jerry a list of activities that might relate to teacher education and the

use of computers. Dave Barnes and I put this outline together, and it covers about 12

items, but it covers many of the topics that have been discussed here, sometimes not

in papers but in the discussions. But I would argue that there is for each of these

kinds of things a research dimension certainly for U.S. classrooms and I suspect that

there's a parallel in Japanese classrooms. I echo Jim Fey's concern that if we take on

such a broad range of things, that we might have our efforts dissipated, whereas we

ought to be dealing with something that is manageable and that can have payoff for us

without trying to do everything. And I think that the exchange of information on

exemplary practices is one focus to take a look at.

Demana: I'd like to throw out a possibility and let me give a little background. The Second

International Mathematics Study is a bit old but I still think there's some stuff in there

that's relevant. And I've been particularly happy to be here this week and to see these

differences open my eyes, and I'm very thankful to our Japanese colleagues for that.

We do have a different point of view and I wonder if we were to take as a basis some

of those items and, perhaps adding others, not with an eye of comparing countries

again but comparing differences within our countries with classrooms that might be

embarking on these technologically rich experiences. And this would give us

information within our own country and have a base line from old data.

Becker: Since there are no other comments now, I would like to make a couple comments.

I've not discussed the first one with Professor Miwa, Mr. Sawada, Professor

Sugiyama or their colleagues yet. Maybe one way to approach possible collaboration
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would be to get better acquainted with what the classroom situations are in the two

countries - the software that's being used and how it's being used Perhaps an

exchange of visits might be one good possibility to get each side more familiar with

the situation on the other side. It might also, from the point of view of seeking

funding, be a little bit more realistic as a starting point. That's one point. The next

point has been touched on, but we might consider some teaching experiments in

which some particular content of the curriculum is identified, the planning of the

teaching organized, and the selection of the software that would be used to enhance

teaching/learning, with some associated evaluation of the effectiveness of the lesson

or lessons and the role of the software in the lesson.. The next point concerns

videotaping. Perhaps we could tape exemplary mathematics lessons in each country

in which software is an important aspect of the teaching approach, both for the

purpose of studying it and as possible models for use in teacher education programs.

Also, examining the teacher education programs in each country might be very

useful, and maybe that's something that, if an exchange of visits were to be arranged,

could be very useful, Here we would look particularly at problem solving and the

use of technology in developing mathematical thinking abilities. Finally, it might be

useful to look at all the different ways in which computers are used in classrooms in

the two countries, not excluding the extent to which students learn to program in a

language and then use the computer in solving certain kinds of problems which

maybe are not solveable without the use of that technology. Our time is now getting

short, and I'm not sure what to suggest with respect to how we sort through all these

various ideas and then select those that we think might be the best on which to focus.

Demana: There's one thing I really feel we didn't bring out. I hope as I hear the terms

software and computer use that, to me, graphing calculators are software function

graphing utilities in the same sense that the math exploration tool kit and other things

are. And given that the Standards in our country assume the use of the graphing

calculator for all students in grade 9-12, if in this collaboration the use of word

software and computer comes to exclude graphing calculators, it will have made a

horrible mistake.

Becker. Then, I would suggest the following agenda for the months ahead. First and

foremost, of course, work on the proceedings. Then on both sides I think we have

to look at the possibility of getting some support for the cross-national collaboration

whatever its nature turns out to be. And as I've said, I think one first step might be to
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see if we could work out an exchange of visits, but I've not discussed that with

Professor Miwa or his colleagues or anyone else and there might be some reactions to

that or some better suggestions. Do you have son- a comments to make regarding

this?

Miwa: I strongly agree with the first proposal that we do need to prepare the Proceedings

and we should do this as soon as possible. The next one is that we proposed some

topics and some of them we can work on together (e.g., make a survey together) and

some of them we can make a survey in each country, and then we're hoping that

we'll have something like this seminar again in the near future so that we can meet

face-to-face and discuss directly and report and discuss the findings; doing it this

way, we can get a lot more out of it than just written information. And, of course,

the exchange visit also stimulates and promotes the understanding so we should like

to do this also. Exchanging the products that we get out of manufacturing software

and stuff like that, by exchanging those ideas as well, will give us a lot of good

openings which will stimulate and help to develop better software. I think this

should be done too. But in order to do all those things, certainly we do need some

support, and so each country should work hard to generate the funding. We have

many suggestions generated by all of us and we'll discuss the selection of topics

again later, to find out what we really want to do.

Becker: We've approached the time when we need to close the Seminar. So we'll finish now

with a brief closing ceremony.

CLOSING CEREMONY

Sawada: In closing, I'd like to thank Professors Becker and Miwa for the success of this

conference and also wish their continued good health. I also want to thank Mr.

McMahon and his staff for their assistance. We have a small gift for each of you

from Japan. I'd like to present these now, as a token of friendship and my wish for

continued communication and collaboration. Thank you again, very much.

Miwa: So, now we finish with this closing ceremony. Before we go, Professor Becker and

I want to remind you of our reservation at the restaurant, for our Farewell Dinner.

We'll meet there at 6:15 p.rh
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Fey: Before we are done here, I think we should express our appreciation to Professors

Miwa and Becker, who deserve a special round of applause.
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REVISED PROPOSED TOPICS FOR FURTHER STUDY

Seminar participants discussed the following topics as a first step towards further

collaborative study and research:

1. Teacher Education

The importance of teacher education in computer use in school mathematics was

emphasized unanimously in this seminar. In particular, the content and method of pre-

service education should be addressed.

2. Software
Excellent software for school mathematics has been demonstrated in this seminar. A

need for inquiry-oriented and open-ended problem solving software and how it should be

used in teaching in the school curriculums of each country was clearly seen. Exchange of

information and further discussion of software is recommended.

3. Curriculum

Strong interest in curriculums based on computer use (e.g., Fey and Held (1991)) has

been expressed. Further study of the potential of this aspect of computer use is

recommended.

4. iviathematics Problems

Problems which are appropriate for mathematical problem solving using the computer

should be developed and collected. These problems are to be given to students and

evaluated, and they need to be "teacher friendly." Open-ended problems appropriate for

computer use should especially be considered.

5. Teaching and Leaning

The role of the teacher and students' interest and attitude changes in connection with

computer use has been identified. Furthermore, computer use should be clarified in

terms of the aims of teaching mathematics in the classroom.

6. Teaching Units (TUs)

There was strong interest in development of Teaching Units on mathematical problem

solving using computers on each side, trying them out, and exchanging them for tryout

and use on the other side, with further revision, if necessary.
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DESCRIPTIONS OF SOME SOFTWARE
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Software Title: Geometry Grapher
Author: Jonathan Choate
Publisher: Houghton Mifflin Company, Boston, MA

Donated by: Houghton Mifflin Company

See usingcosinaatkapaigamillikluchingskcigoncia in this volume for a description of

this piece of software and how it is used in the teaching of geometry.

Description by Jonathan Choate

423

4361



MathCAD

MathCAD is a multi-purpose, flexible and extendible software package for learning and

doing mathematics. It combines a simple word processor, a grapher for both functions and data,

and a powerful numeric package for evaluating expressions and solving equations. This

combination allows students to perform the calculations, write a description of the problem and

how their solution works, and illustrate the problem graphically and with tables all in one

document. All of the expressions, equations, plots, and tables are live and interactive. By

changing parameters in the document, students can see immediately the new results. Versions of

MathCAD run on Macintosh, PC DOS, and PC Windows machines. MathCAD 3.1, Windows

Version is a significant upgrade from Version 2.5. In addition to operating through the Windows

interface, the software has greatly enhanced its visual presentation of mathematical formulas. The

software has also added an analytic component to the numerical package with a small set of basic

symbolic tools embedded in the software. This symbolic component in MathCAD is based on the

Maple symbolic engine developed by Waterloo Maple Software, Inc. The student can study any

problem situation graphically, numerically, and analytically.

Our students work with the Student Edition of MathCAD, version 2.0. This reduced set

offers a two-page worksheet that has been adequate for most of our student's projects. When the

software boots, the student is presented with a blank screen. What happens next is entirely under

the student's control. Because MathCAD is so powerful and free-form; it is not a simple matter to

learn to use it effectively. In our calculus classes, we have found it beneficial, initially, to set up

interactive templates for students to enter and alter. In altering the templates, the students learn to

move around in the software and become comfortable with the different aspects of working with

data, graphing functions, linearizing data and fitting curves, generating functions through iteration,

and solving equations using Newton's Method and differential equations using Euler's Method.

As the course progress, the students become responsible for creating more of each document. By

the end of the course, they have a tool which is available to them at all times.

02139.

MathCAD is a product of Math Soft Inc., 201 Broadway, Cambridge, Massachusetts,

Description by Dan Teague
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Software Title: STELLA
Publisher: High Performance Systems, Lyme, NH

Donated by: High Performance Systems

STELLA is an iconic modeling package which takes full advantage of the Macintosh's mouse and

pull-down menu interface. STELLA is an acronym for Structured Thinking Educational Learning

Laboratory with Animation. It is an iconic version of the language DYNAMO (DYNAmic

MOdels) developed by Jay Forrester of the Sloan School at the Massachusetts Institute of

Technology. It was originally designed as a tool for building economic and business simulation

models using system dynamics techniques. STELLA is much easier to use than DYNAMO and

makes it possible for someone with little training to build dynamic models of systems. All

STELLA models consist of tanks and valves or stocks and flows. Tanks are things which

accumulate and valves are things which control flows into tanks. Here is how you would use

STELLA to build a model of a savings account with an initial balance of $1000 which paid 10%

interest compounded quarterly for a period of 10 years starting in 1992.

-Using the mouse select a tank from the tool palette on the left. Drag it onto the screen and label it

BALANCE. Double click on the tank and a dialogue window opens up which asks for the initial

value of BALANCE. Enter 1000 and close the window.

-Select a valve icon from the tool palette on the left, drag it on to the screen, place it so it sticks into

the tank and label it INTEREST.

-Select an arrow icon from the tool palette, and place so it starts at the tank and enters the valve.

This passes the current value of BALANCE into the INTEREST valve. Figure 1. shows what the

screen would like at this point.
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Fig. 1. STELLA bank balance model

-Double click on the INTEREST valve and a dialogue window like the one shown in Fig. 2. opens

up asking you for an equation defining INTEREST and telling you that the equation must contain

BALANCE. The arrow from BALANCE to INTEREST requires you to use BALANCE in

defining INTEREST.
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Fig. 2. Defining the INTEREST value.

-Go to the WINDOWS menu and select GRAPH. A set of axes with no labels and scales will

appear. Double click on this and a dialogue window will open up asking for what you want to
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graph and what scale you want to use. Enter BALANCE and a vertical scale of 0 to 5000 and

close the window.

-Go to the RUN menu and select TIME SPECS. Enter 1992 for the START TIME, 2002 for the

FINAL TIME and .25 for DT. Entering .25 for DT is how you tell the program to calculate the

interest every quarter of a year.

-The model is now ready to run. Go to the WINDOWS menu, select GRAPH and the set of axes

you defined earlier will return. Go to the RUN menu and select RUN. The model is now running

and, in a few seconds, a graph similar to the one shown in Fig. 3. will be drawn.
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Fig. 3. Graph produced by bank balance model

Once the graph is drawn, it can be saved. One can change the model by either entering a new

initial value or changing the value for the interest rate. STELLA will also produce a table of values

along with the graph.

STELLA makes it very easy to build dynamic models of systems for which the rate equations can

be defined. This allows students with no knowledge of calculus to build simulation models. Since

it is so easy to change a model once it is built, it allows the student to play with a model once it is

constructed. STELLA's ease of use and power enables students to easily model a variety of

systems and to study their behavior. For this reason, it should be looked at very carefully by all

concerned with secondary mathematics education.

Description by Jonathan Choate
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Title: Slalom, ZOT, ZigZag: Challenges in Graphing Equations
Authors: S. Dugdale, D. Kibbey, L. J. Wagner
Publisher: Sunburst Communications, Pleasantville, New York
Donated by: Sunburst

This software package provides an informal, graphical introduction to zeros of functions, rational

functions, absolute value functions, and pairs of parallel and perpendicular lines. Carefully-

sequenced challenges help students develop algebraic techniques and use them graphically. Hints

available with the challenges encourage a variety of approaches, such as transformation, addition,

and composition of functions.

The structure of the challenges reverses the usual textbook approach of introducing techniques and

then providing problems for practice. Instead, a problem is posed, a technique must be devised,

and hints (not solutions) are available upon request. The hints offer thought-provoking

suggestions and encourage students to develop problem-solving strategies. The screen layout for

each challenge is computer-generated to provide variety within specific constraints. Students

trying the same challenge several times encounter several different arrangements and need to

construct different equations for them. Figure I shows a challenge from the Zeros of Functions

section.
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Challenge 4
To see
a hint,
press H.

-10 ; X i I X ! 1 1 110

Write a unc ion wi zeros at the X's
whose graph misses the III and the red blocks.

Good!
> Y=0C+7)(X+2)(X-3)(X-6)/150

Figure 1. This challenge requires a function that has given zeros and whose graph stays within a

limited range between the zeros. In the second frame, the challenge has been successfully

completed by first constructing a function that has the requested zeros, then transforming the

function to contract the graph vertically so that it stays within the specified bounds.
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The techniques addressed in this software draw upon those that students have devised and found

rewarding in playing Green Globs. (See the software description on page .) Slalom, ZOT,

ZigZag provides a structured environment to encourage more students to participate in the sort of

creative exploration of functions that some students have initiated in Green Globs. The techniques

devised by students through experimentation differ somewhat from the usual textbook approaches.

For example, students' development of rational functions in Green Globs resulted in a basic

function to define the overall shape of the graph, plus several individual rational terms, each used

to control the behavior of the function near a particular discontinuity. Students' construction of

polynomial functions in factored form facilitates manipulation of the zeros and extrema more

directly than the conventional expression of polynomial functions as a sum of terms.

Three motivating games provide interactive environments for applying the techniques learned

through the challenges. In Slalom students construct functions with appropriate zeros, maxima,

and minima to guide a skier's path through flags or gates on a ski slope. When an equation is

entered, a skier proceeds along the specified path, leaving the graph as a trail, as shown in Figure

2. When students choose gates instead of flags on the ski slope, the skier must go through the

gates (not just above and below them), so more precision is necessary.

10

FititsH

10

31=(X+7.5)(X+5)(X+2)(X-1.3)(X-3.8)/140

calculating

Figure 2. The skier clears the fourth flag in a successful game of Slalom. The skier must enter

through the START banner, go alternately below and above the flags, and exit through the

FINISH banner, without leaving the course bounds before the run is complete.
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The challenges in the Rational Functions section are followed by a game, ZOT!, in which students

combine various techniques to navigate a system of tunnels. Each tunnel pattern is a horizontal or

diagonal path with vertical side tunnels. The vertical tunnels may go up only, down only, or both

ways. Some intersections may have diagonal obstructions, so that the direction of the graph

branches must be planned carefully.

Students playing ZOT! may choose to have the targets in the tunnels be ants or abstract rectangular

objects. If ants are chosen, the main character of the game is the anteater with the incredible

tongue. (See Figure 3.) The anteater's tongue is capable of leaving the screen, wrapping all the

way around infinity (that's incredible!), and reentering the screen from the other direction.

However, it must avoid any blocks in the tunnels, and it cannot go through the ground around the

tunnels.

zo

!).

' **

Write an equcifion fo zotAlle ants.
Y=-x/4-.5/(x+2)-.5/(x-4)2+2

You missed an ant. Try again.

Figure 3. A game of ZOT! with ants as targets. The anteater has hit five ants, but has missed

the sixth. This example requires a function with a linear term and two rational terms. Further, in

order to stay inside the tunnels, the second rational term must have negative function values on

both sides of the asymptote, so the denominator of this term has been squared and a negative

coefficient has been used.

The challenges in the Absolute Value section of Slalom, ZOT, ZigZag are followed by a game,

ZigZag, in which students use absolute value functions to hit targets scattered in a maze of

diamond-shaped blocks.

4.31

Review by Sharon Dugdale
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Software Title: Green Globs and Graphing Equations
Authors: S. Dugdale & D. Kibbey
Publisher: Sunburst Communications, Pleasantville, New York
Donated by: Sunburst

This software package provides mathematical environments for students to manipulate and explore.

The content is equations and graphs. The four programs in the package are described briefly

below. More detailed discussion of the programs and their use can be found in the software

manual and in the references listed below.

Program 1: Equation Plotter is a utility program that plots the graphs of entered equations. It is

effective for a variety of exploration and problem solving activities. Besides plotting functions

beginning with "y =" and "x =," this program and the others in the package handle conic

equations, such as circles, ellipses, and hyperbolas. Functions may include square root, absolute

value, logarithmic, exponential, and trigonometric expressions. Eligible expressions are accepted

in natural formats. For example, the program does not require "3*x," but accepts the usual "3x."

Likewise it accepts "tan2(y it)" rather than requiring something like (tan(y - 3.14))**2." Axes

may be scaled to suit the problem, and the scaling parameters may include 7E.

Program 2: Linear and Quadratic Graphs provides practice relating equations to graphs. The

program displays graphs and asks students to enter an appropriate equation for each given graph.

Students' equations are graphed, so that students can compare their own graphs with the target

graph and edit their equations as needed to match the target graph. The program offers a choice of

lines, parabolas, circles, ellipses, hyperbolas, or a mix of these types of graphs. A series of levels

guides students from a basic shape, say y = x2, through increasingly complex transformations of

the basic graph, including combinations of reflection, stretch/shrink, and translation.

Program 3: Green Globs provides students a compelling environment in which to apply and

share what they are learning about equations and graphs. The program displays coordinate axes

with 13 green globs scattered to appear randomly placed. The object of the game is to hit all of the

globs with graphs specified by entering equations. When a glob is hit, it explodes and disappears.

When a shot misses the expected targets, the display of the graph gives the student useful

diagnostic information for planning the next shot.
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The scoring algorithm encourages students to hit as many globs as possible with each shot. For

each shot, the first glob hit is worth one point, the second is worth two points, the third is worth

four, and so on. For example, a five-glob shot will score 1 + 2 + 4 + 8 + 16, for a total of 31

points. Figure 1 shows a sequence of displays from the game.

Your Shot: 1> y.2(x-2) 2-8

RETURN for another shot.

10

Your Shot: 1> y.,1+2x/3
RETURN for another shot.

10

Your Shot: x...(y+2)2/5-6

RETURN for another shot.

Figure 1. Sequential disph: ys from a game of Green Globs. Students enter equations, which

are graphed by the computer. The green globs explode as they are hit by the graphs. Shown is the

initial display of thirteen globs, followed by a student's first three shots.
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The top ten scores are kept in a Records Section, where students' names are displayed along with

their record making scores. Complete information about each game in the Records Section is

stored so that the games can be replayed (i.e., viewed as originally played) by other students who

want to see what shots and strategies the top-scoring players have used. Sharing of ideas through

games stored in the Records Section exposes students to a variety of creative strategies invented by

their classmates. Students frequently replay stored games in order to gather new ideas to try in

their own games. Examples of the ideas that have appeared in the Records Section are illustrated in

Figures 2-4.

Figure 2. A student has constructed a parabola to hit several green globs, and has then added

1/(x 3.5) to the equation. The effect of this extra term is negligible for all values of x except those

close to 3.5, so the resulting graph is nearly the expected parabola except around x = 3.5. As x

gets close to 3.5, the denominator of the extra term approaches zero, making a vertical asymptote

and causing the graph to leave the parabolic path briefly to hit three more globs. Students later

extended this technique to create functions with multiple asymptotes.
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Figure 3. A student playing Green Globs experiments with equations of the form

y = a(x h)n k, where a is small and n is even.

.
Your 7.-- :-.
Shot -

x =. 25)2-7+3sin (50
RETURN for another shot.

1Z

Figure 4. In the Expert Section of Green Globs, students can use trigonometric functions, but

their graphs must avoid the five "shot absorbers" scatiered among the globs. Here a student has

constructed a parabola and then added 3sin(5y) to make the graph cover a wider path, while

avoiding the shot absorbers.
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Program 4: Tracker is also a game environment with graphs. Whereas Green Globs encourages

students to explore many types of functions, Tracker deals specifically with linear and quadratic

graphs. Students are required to locate graphs that are "hidden" in the coordinate plane and to

determine the equations of the hidden graphs. The hidden graphs may be lines, parabolas, circles,

ellipses, or hyperbolas, but there are only two types of graphs to find in any one game.

Students input two kinds of "shots" in this game: probes and trackers. Probes are used to find

clues about the hidden graphs. Students launch a probe by typing its equation. A probe travels in

a horizontal or vertical line, like x = 4 or y = -3. As a probe goes across the screen, it marks each

point where it crosses a hidden graph. Graphs of one type are marked with an 'X,' and graphs of

the other type are marked with an 'O.' After gathering enough clues to locate a graph, students

send a tracker along the graph by writing its equation. Students can switch freely between

shooting probes (to find clues) and trackers (to trace a graph).

The scoring algorithm encourages students to minimize the number of probes and trackers used.

Hence, students plan strategies to locate key points for various types of graphs. For example, if

the sides of a parabola have been located, a reasonable strategy is to find the vertex by shooting a

probe half-way between the sides, along the axis of a symmetry. Or if a probe has crossed a

circle, students may need to decide what additional probes are necessary to determine the

coordinates of the center. Figure 5 shows two frames from a game of Tracker.
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To
switch
between
probe
and
tracker,
press -10

111

To
forfeit,
press
ESC.

Probe
Press RETURN or ERASE to try another.

Score
-1

lif

To
switch
between
probe
and
tracker,
press -1 B
se5

x

To
forfeit,
press
ESC.

Score
29

Tracker y -- (x +3) 2/2 +5

Right! Press RETURN to try another.

Figure 5. Two frames from a game of Tracker. In the first frame a probe with the equation

y = 3 has intercepted hidden graphs at several points. In this student's gave, X's mark points

where the probe crossed straight lines, and O's mark points where it crossed parabolas. Using

more probes, in the second frame the student has located a parabola. By writing the equation of

the hidden graph, the student has sent a tracker along it. There are two more graphs to locate and

track.
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